RAS PhysicsГеомагнетизм и аэрономия Geomagnetism and Aeronomy

  • ISSN (Print) 0016-7940
  • ISSN (Online) 3034-5022

Response of the Cutoff Rigidity of Cosmic Rays to Changes in the Dynamic and Magnetic Parameters of the Solar Wind and Geomagnetic Activity During the Storm on March 23-24, 2023

PII
S3034502225040031-1
DOI
10.7868/S3034502225040031
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 4
Pages
437-447
Abstract
We investigated the correlations between the cutoff rigidity of cosmic rays and the parameters of interplanetary space, solar wind, and geomagnetic activity during a strong magnetic storm on March 23-24, 2023. The cutoff rigidity of cosmic rays was obtained by calculating the trajectories of particles in the magnetic field of the solar wind according to the Tsyganenko Ts01 model. The analysis showed that the changes in the cutoff rigidity is controlled mainly by changes in the indices of geomagnetic activity Dst (correlation coefficient k ≈ 0.95), as well as electromagnetic parameters - the total value of the interplanetary magnetic field B, its component Bz, the azimuthal component of the electric field Ey, and the plasma parameter β (|k| ≈ 0.6-0.75). The parameters of the solar wind such as velocity V, density N, and dynamic pressure P have little effect on the variations of the cosmic ray cutoff rigidity (|k| < 0.45).
Keywords
жесткость геомагнитного обрезания космические лучи солнечный ветер магнитная буря межпланетное магнитное поле геомагнитная активность
Date of publication
25.09.2025
Year of publication
2025
Number of purchasers
0
Views
26

References

  1. 1. Данилова О.А., Птицына Н.Г., Тясто М.И., Сдобнов В.Е. Изменения жесткостей обрезания космических лучей во время бури 8-11 марта 2012 г. в период CAWSES II // Солнечно-земная физика. Т. 9. № 2. С. 86-93. 2023. https://doi.org/10.12737/szf-92202310.
  2. 2. Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномасштабных явлений солнечного ветра для периода 1976-2000 гг. // Космические исследования Т. 47. № 2. С. 99-113. 2009. https://doi.org/10.1134/S0010952509020014
  3. 3. Куражковская Н.А., Зотов О.Д., Клайн Б.И. Связь развития геомагнитных бурь с параметром β солнечного ветра // Солнечно-земная физика. Т. 7. № 4. С. 25-34. 2021. https://doi.org/10.12737/szf-74202104
  4. 4. Птицына Н.Г., Данилова О.А., Тясто М.И., Сдобнов В.Е. Влияние параметров солнечного ветра и геомагнитной активности на вариации жесткости обрезания космических лучей во время сильных магнитных бурь // Геомагнетизм и аэрономия. Т. 59. № 5. С. 569-577. 2019. https://doi.org/10.1134/S0016794019050092
  5. 5. Adriani O., Barbarino G.C., Bazilevskaya G.N. et al. PAMELA’s measurements of geomagnetic cutoff variations during the 14 December 2006 storm // Space weather. V. 14. № 3. P. 210-220. 2016. https://doi.org/10.1002/20165W001364
  6. 6. Akasofu S.I. The magnetospheric currents: An introduction. In T. A. Potemra (Ed.), Magnetospheric currents // Geophysical MonographSeries. Washington, DC: American Geophysical Union. V. 28. P. 29-48. 1984. https://doi.org/10.1029/GM028p0029
  7. 7. Alexeev I.I., Kalegaev V.V., Belenkaya E.S., Bobrovnikov S.Y., Feldstein Ya.I., and Gromova L.I. Dynamic Model of the Magnetosphere: Case Study for January 9-12, 1997 // J. Geophys. Res. V. 106. P. 25683-25694. 2001. https://doi.org/10.1029/2001JA900057
  8. 8. Antonova E.E. Magnetostatic equilibrium and turbulent transport in Earth’s magnetosphere: A review of experimental observation data and theoretical approaches // International Journal of Geomagnetism and Aeronomy. V. 3. № 2. P. 117-130. 2002
  9. 9. Belov A., Baisultanova L., Eroshenko E., Mavromichalaki H., Yanke V., Pehelkin V., Plainaki C., Mariatos G. Magnetospheric effects in cosmic rays during the unique magnetic storm on November 2003 // J. Geophys. Res. V. 110. A09S20. 2005. https://doi.org/10.1029/2005JA011067
  10. 10. Belov S.M., Zobnin G.I., and Yanke V.G. Program for calculating the geomagnetic cutoff rigidity of cosmic rays and the trajectories of their motion // Bull. Russ. Acad. Sci.: Phys. V. 85. № 11. P. 1297-1301. 2021. https://doi.org/10.3103/S106287382111006X
  11. 11. Borovsky J.E., Denton M.H. Differences between CMEdriven storms and CIR-driven storms // J. Geophys. Res. V. 111. Iss. A7. A07S08. 2006. https://doi.org/10.1029/2005JA011447
  12. 12. Castillo Y., Pais M.A., Fernandes J., Ribeiro P., Morozova A.L. Geomagnetic activity at Northern Hemisphere’s mid-latitude ground stations: How much can be explained using Ts05 model // Journal of Atmospheric and Solar-Terrestrial Physics. V. 165-166. P. 38-53. 2017. https://doi.org/10.1016/j.jastp.2017.11.002
  13. 13. D’Amicis R., Bruno R., Bavassano B. Geomagnetic activity driven by solar wind turbulence // JASR. V. 46. P. 514-520. 2010. https://doi.org/10.1016/j.asr.2009.08.031
  14. 14. Dorman L.I. Elementary particle and cosmic ray physics. Elsevier. New York, 456 p. 1963
  15. 15. Dungey J.W. Interplanetary magnetic field and the auroral zones // Phys Rev Lett. V. 6. P. 47-48. 1961. https://doi.org/10.1103/PhysRevLett.6.47
  16. 16. Dubyagin S., Ganushkina N., Kubyshkina M., Liemohn M. Contribution from different current systems to SYM and ASY midlatitude indices // J. Geophys. Res. Space Phys. V. 119. P. 7243-7263. 2014
  17. 17. Flickiger E.O., Smart D.F., Shea M.A. Determination the strength of the ring and the magnetopause currents during the initial phase of geomagnetic storm using cosmic ray data // J. Geophys. Res. V. 95 (A2). P. 1113-1118. 1990. https://doi.org/10.1029/JA095iA02p01113
  18. 18. Ganushkina N.Y., Liemohn M.W., Dubyagin S. Current systems in the Earth’s magnetosphere // Reviews of Geophysics. V. 56. P. 309-332. 2018. https://doi.org/10.1002/2017RG000590
  19. 19. Gosling J.T. The solar flare myth // J. Geophys. Res. Space Physics. V. 98. № A11. 18937-18949. 1993. https://doi.org/10.1029/93JA01896
  20. 20. Gonzalez W.D., Tsurutani B.T. Criteria of Interplanetary Parameters Causing Intense Magnetic Storms (Dst < -100 nT) // Planetary Space Science V. 35. P. 110-109. 1987. https://doi.org/10.1016/0032-0633 (87)90015-8
  21. 21. Gonzalez W.D., Tsurutani B.T., Clida de Gonzalez A.L. Interplanetary origin of geomagnetic storms // Space Science Reviews. V. 88. № 3. P. 529-562. 1999
  22. 22. Gromova L.I., Kleinenova N.G., Gromov S.V., Kanonidi K.K., Petrov V.G., Malysheva L.M. Intensive substorms during the main phase of the magnetic storm on march 23-24, 2023 // Geomagn. Aeron. V. 64. P. 881-889. 2024. https://doi.org/10.1134/S0016793224600772
  23. 23. Kalegaev V.V., Ganushkina N.Yu., Pulkkinen T.I., Kubyshkina M.V., Singer H.J., Russell C.T. Relation between the Ring Current and the Tail Current During Magnetic Storms // Ann. Geophys. V. 26. № 2. P. 523-533. 2005
  24. 24. Kalegaev V.V. Dynamic Geomagnetic Field Models // Geomagnetism and Aeronomy. V. 51. № 7. P. 855-865. 2011. https://doi.org/10.1134/S0016793211070073
  25. 25. Kress B.T., Mertens C.J., Wilberger M. Solar energetic particle cutoff variations during the 29-31 October 2003 geomagnetic storm // Space Weather. V. 8. S05001. 2010. https://doi.org/10.1029/2009SW000488
  26. 26. Kress B.T., Hudson M.K., Perry K.L., Slocum P.L. Dynamic modeling of geomagnetic cutoff for the 23-24 November 2001 solar energetic particle event // Geophys. Res. Lett. V. 31. L04808. 2004. https://doi.org/10.1029/2003GL018599
  27. 27. Kress B.T., Hudson M.K., Selesnick R.S., Mertens C.J., Engel M. Modeling geomagnetic cutoffs for space weather applications // J. Geophys. Res. Space Physics. V. 120. № 7. P. 5694-5702. 2015. https://doi.org/10.1002/2014JA020899
  28. 28. McCracken K.G., Rao U.R., Shea M.A. The trajectories of cosmic rays in a high degree simulation of the geomagnetic field // M.I.T. Tech. Rep. 77. Lab. for Nucl. Sci. and Eng., Mass. Inst. of Technol. Cambridge. 1962
  29. 29. Ptitsyna N.G., Danilova O.A., Tyasto M.I., Sdobnov V.E. Cosmic ray cutoff rigidity governing by solar wind and magnetosphere parameters during the 2017 Sep 6-9 solar-terrestrial event // Journal of Atmospheric and Solar-Terrestrial Phys. V. 246. Article Number 106067. 2023. https://doi.org/10.1016/j.jastp.2023.106067
  30. 30. Richardson I.G. Solar wind stream interaction regions throughout the heliosphere // Living Rev Sol Phys. V. 15. № 1. P. 1-95. 2018. https://doi.org/10.1007/s41116-017-0011-z
  31. 31. Russell C.T. Reconnection, in Physics of Solar Planetary Environments / Proceedings of the International Symposium on Solar-Terrestrial Physics. June 7-18. 1976. Boulder. Colorado VII / Ed. D.J. Williams. P. 526-540. AGU. Washington D. C. 1976. https://doi.org/10.1029/SP008p0526
  32. 32. Shea M.A., Smart D.F., McCracken K.G. A study of vertical cutoff rigidities using sixth degree simulations of the geomagnetic field // J. Geophys. Res. V. 70. P. 4117-4130. 1965
  33. 33. Shimazu H. Solar proton event and proton propagation in the Earth’s magnetosphere // J. Natl. Inst. Inf. Commun. Technol. V. 56. № 1-4. P. 191-199. 2009. https://www.nict.go.jp/publication/shuppan/kihou-journal/journal-vol56no1_2_3_4/journal-vol56no1-4_020305.pdf
  34. 34. Stormer C. The Polar Aurora // London: Oxford University Press. Quarterly Journal of the Royal Meteorological Society: V. 82. Iss. 351. P. 115-115. 1956. https://doi.org/10.1002/qj.49708235123
  35. 35. Tahir A., Wu F., Shah M, Amory-Mazaualier C., Jamjareegulgarn P., Verhulst T.G.W., Ameen M.A. Multi-Instrument Observation of the Ionospheric Irregularities and Disturbances during the 23-24 March 2023 Geomagnetic Storm // Remote Sens. V. 16. № 9. P. 1594-1621. 2024. https://doi.org/10.3390/rs16091594
  36. 36. Teng W., Su Y., Ji H., Zhan Q. Unexpected major geomagnetic storm caused by faint eruption of a solar transequatorial flux rope // Nature Communications. V. 15. P. 9198-9214. 2024 https://doi.org/10.1038/s41467-024-53538-1
  37. 37. Tsyganenko N.A., Singer H.J., Kasper J.C. Storm-time distortion of the inner magnetosphere: How severe can it get? // J. Geophys. Res. V. 108 (A5). P. 1209-1215. 2003. https://doi.org/10.1029/2002JA009808
  38. 38. Tyssøy H.N., Stadsnes J. Cutoff latitude variation during solar proton events: Causes and consequences // J. Geophys. Res.Space Physics. V. 120. P. 553-563. 2014. https://doi.org/10.1002/2014JA0200508
  39. 39. https://kauai.ccmc.gsfc.nasa.gov/CMEscoreboard/PreviousPredictions/2023
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library