RAS PhysicsГеомагнетизм и аэрономия Geomagnetism and Aeronomy

  • ISSN (Print) 0016-7940
  • ISSN (Online) 3034-5022

Model of the Position of the Main Ionospheric Trough in the Eccentric Dipole Coordinates

PII
S3034502225030062-1
DOI
10.7868/S3034502225030062
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 3
Pages
351-357
Abstract
Based on the data of probe measurements of the electron density in the ionosphere on the CHAMP satellite from July 2000 to December 2007, an analysis of the possibility of using the coordinates of the eccentric dipole (ED) in the model for the invariant latitude of the minimum of the main ionospheric trough, Φ, was carried out. It has been established that the Φ model constructed from these data in the coordinates of the corrected geomagnetic (CGM) latitude can be used without changes in the ED coordinates, since the standard deviation of the model is less than the difference in the Φ values for these two options for specifying geomagnetic latitudes. The difference in the Φ values for these two options is minimal for the Southern Hemisphere and can be noticeable for the Northern Hemisphere, especially at the longitudes of the East Siberian Magnetic Anomaly. The dependence of Φ on local time and geomagnetic activity is the main one. The dependence of Φ on geographic longitude is relatively weak, therefore the difference in the Φ values between the CGM and ED coordinates even at the longitudes of the East Siberian Magnetic Anomaly is less than the standard deviation of the model.
Keywords
ионосфера главный ионосферный провал координаты эксцентричного диполя модель
Date of publication
12.12.2024
Year of publication
2024
Number of purchasers
0
Views
28

References

  1. 1. Акасофу С.-И., Чепмен С. Солнечно-земная физика. Ч. 1. М.: Мир, 384 с. 1974.
  2. 2. Деминов М.Г., Шубин В.Н. эмпирическая модель положения главного ионосферного провала // Геомагнетизм и аэрономия. Т. 58. № 3. С. 366-373. 2018. https://doi.org/10.7868/S0016794018030070
  3. 3. Aa E., Zou S., Erickson P.J., Zhang S.-R., Liu S. Statistical analysis of the main ionospheric trough using Swarm in situ measurements // J. Geophys. Res. - Space. V. 125. № 3. ID e2019JA027583. 2020. https://doi.org/10.1029/2019JA027583
  4. 4. Annakuliev S.K., Afonin V.V., Deminov M.G., Karpachev A.T. An empirical formula for the position of the main ionospheric trough during a magnetic storm // Geomagn. Aeronomy. V. 37. № 3. P. 392-395. 1997.
  5. 5. Deminov M.G., Fishchuk Ya.A. On the use of the geomagnetic field approximation by the eccentric dipole in problems of ionosphere and plasmasphere modeling // Geomagn. Aeronomy. V. 40. № 3. P. 383-387. 2000.
  6. 6. Fraser-Smith A.C. Centered and eccentric geomagnetic dipoles and their poles, 1600-1985 // Rev. Geophys. V. 25. № 1. P. 1-16. 1987. https://doi.org/10.1029/RG025i001p00001
  7. 7. Gustafsson G., Papitashvili N.E., Papitashvili V.O. A revised corrected geomagnetic coordinate system for epochs 1985 and 1990 // J. Atmos. Terr. Phys. V. 54. № 11-12. P. 1609-1631. 1992. https://doi.org/10.1016/0021-9169 (92)90167-J
  8. 8. Karpachev A.T. Dependence of the main ionospheric trough position on local time, longitude and geomagnetic activity in the southern winter hemisphere // Adv. Space Res. V. 74. № 11. P. 6065-6073. 2024. https://doi.org/10.1016/j.asr.2024.08.075
  9. 9. Shepherd S.G. Altitude-adjusted corrected geomagnetic coordinates: Definition and functional approximations // J. Geophys. Res.- Space. V. 119. № 9. P. 7501-7521. 2014. https://doi.org/10.1002/2014JA020264
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library