RAS PhysicsГеомагнетизм и аэрономия Geomagnetism and Aeronomy

  • ISSN (Print) 0016-7940
  • ISSN (Online) 3034-5022

Using the Event Matrix for Chorus from the Lower Frequency Band to Determine Some Characteristics of Their Excitation Mechanism

PII
10.31857/S0016794024060028-1
DOI
10.31857/S0016794024060028
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 64 / Issue number 6
Pages
737-749
Abstract
The work is devoted to studying the quantitative characteristics of the mechanism of excitation of VLF chorus emissions by means the analysis of high-resolution data from the Van Allen Probe spacecraft. A typical example of chorus with spectral forms in the lower frequency band (below half the electron cyclotron frequency) in the region of the local minimum of the magnetic field behind the plasmapause in the middle magnetosphere has been chosen. The results of wave field measurements in a high-resolution data channel are presented in the form of a rectangular event matrix, each row of which corresponds to one cycle of the wave process. In the event matrix, rows are selected that correspond to those implementation fragments that clearly characterize the natural source of short electromagnetic pulses origin. This made it possible to determine the complex eigen-values of the characteristic equation of the source at the linear stage of excitation of the chorus. The values of the roots of the characteristic equation, established by analyzing the observation data of chorus, correspond to implementation of the mechanism for exciting chorus by amplifying noise electromagnetic pulses in enhanced ducts.
Keywords
ОНЧ-хоры обработка наблюдательных данных взаимодействие волн и частиц средняя магнитосфера
Date of publication
01.06.2024
Year of publication
2024
Number of purchasers
0
Views
31

References

  1. 1. Арцимович Л.А., Сагдеев Р.З. Физика плазмы для физиков. М.: Атомиздат, 313 с. 1979.
  2. 2. Agapitov O., Blum L.W., Mozer F.S., Bonnell J.W., Wygant J. Chorus whistler wave source scales as determined from multipoint Van Allen Probe measurements // Geophys. Res. Lett. V. 44. N 6. P. 2634–2642. 2017. https://doi.org/10.1002/2017GL072701
  3. 3. Bell T.F., Inan U.S., Hague N., Pickett J.S. Source regions of banded chorus // Geophys. Res. Lett. V. 36. N 11. ID L11101. 2009. https://doi.org/10.1029/2009GL037629
  4. 4. Bespalov P., Savina O. An excitation mechanism for discrete chorus elements in the magnetosphere // Ann. Geophys. V. 36. N 5. P. 1201–1206. 2018. https://doi.org/10.5194/angeo-36-1201
  5. 5. Bespalov P.A., Savina O.N. Excitation of chorus with small wave normal angles due to beam pulse amplifier (BPA) mechanism in density ducts // Ann. Geophys. V. 37. N 5. P. 819–824. 2019. https://doi.org/10.5194/angeo-37-819-2019
  6. 6. Bespalov P.A., Savina O.N. Electromagnetic pulse amplification in a magnetized nearly stable plasma layer // Results Phys. V. 28. ID 104607. 2021. https://doi.org/10.1016/j.rinp.2021.104607
  7. 7. Bespalov P.A., Savina O.N., Neshchetkin G.M. Hausdorf dimension of electromagnetic chorus emissions in their excitation region according to Van Allen probe data // Results Phys. V. 35. ID 105295. 2022. https://doi.org/10.1016/j.rinp.2022.105295
  8. 8. Bortnik J., Thorne R.M., Meredith N.P. The unexpected origin of plasmaspheric hiss from discrete chorus emissions // Nature. V. 452. N 7183. P. 62–66. 2008. https://doi.org/10.1038/nature06741
  9. 9. Chen H., Wang X., Chen L., Omura Y., Lu Q., Chen R., Xia Z., Gaoet X. Simulation of downward frequency chirping in the rising tone chorus element // Geophys. Res. Lett. V. 50. N 9. ID e2023GL103160. 2023. https://doi.org/10.1029/2023GL103160
  10. 10. Fu X., Cowee M.M., Friedel R.H., Funsten H.O., Gary S.P., Hospodarsky G.B., Kletzing C., Kurth W., Larsen B.A., Liu K., MacDonald E.A., Min K., Reeves G.D., Skoug R.M., Winske D. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and Particle-in-Cell simulations // J. Geophys. Res. – Space. V. 119. N 10. P. 8288–8298. 2014. https://doi.org/10.1002/2014JA020364
  11. 11. Gao X., Lu Q., Bortnik J., Li W., Chen L., Wang S. Generation of multiband chorus by lower band cascade in the Earth’s magnetosphere // Geophys. Res. Lett. V. 43. N 6. P. 2343–2350. 2016. https://doi.org/10.1002/2016GRL068313
  12. 12. Haque N., Inan U.S., Bell T.F., Pickett J.S., Trotignon J.G., Facsko G. Cluster observations of whistler mode ducts and banded chorus // Geophys. Res. Lett. V. 38. N 18. ID L18107. 2011. https://doi.org/10.1029/2011GL049112
  13. 13. Helliwell R.A. Whistlers and related ionospheric phenomena. Stanford, CA: Stanford University Press, 349 p. 1965.
  14. 14. Helliwell R.A. The role of the Gendrin mode of VLF propagation in the generation of magnetospheric emissions // Geophys. Res. Lett. V. 22. N 16. P. 2095–2098. 1995. https://doi.org/10.1029/95GL02003
  15. 15. Karpman V.I., Kaufman R.N. Whistler wave propagation in magnetospheric ducts (in the equatorial region) // Planet. Space Sci. V. 32. N 12. P. 1505–1511. 1984. https://doi.org/10.1016/0032-0633 (84)90017-5
  16. 16. Katoh Y., Omura Y. Electron hybrid code simulation of whistler mode chorus generation with real parameters in the Earth’s inner magnetosphere // Earth Planets Space. V. 6. N 1. ID 192. 2016. https://doi.org/10.1186/s40623-016-0568-0
  17. 17. Kletzing C.A., Kurth W.S., Acuna M., et al. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP // Space Sci. Rev. V. 179. N 1–4. P. 127–181. 2013. https://doi.org/10.1007/s11214-013-9993-6
  18. 18. Kurita S., Katoh Y., Omura Y., Angelopoulos V., Cully C.M., Le Conte O., Misawa H. THEMIS observation of chorus elements without a gap at half the gyrofrequency. J. Geophys. Res. – Space. V. 117. N 11. ID A11223. 2012. https://doi.org/10.1029/2012JA018076
  19. 19. Meredith N.P., Cain M., Horne R.B., Thorne R.M., Summers D., Anderson R.R. Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods // J. Geophys. Res. – Space. V. 108. N 6. ID 1248. 2003. https://doi.org/10.1029/2002JA009764.
  20. 20. Omura Y., Katoh Y., Summers D. Theory and simulation of the generation of whistler-mode chorus // J. Geophys. Res. – Space. V. 113. N 4. ID A04223. 2008. https://doi.org/10.1029/2007JA012622
  21. 21. Summers D., Thorne R.M., Xiao F. Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere // J. Geophys. Res. – Space. V. 103. N 9. P. 20487–20500. 1998. https://doi.org/10.1029/98JA01740
  22. 22. Trakhtengerts V.Y. Magnetosphere cyclotron maser: Backward wave oscillator generation regime // J. Geophys. Res. – Space. V. 100. N 9. P. 17205–17210. 1995. https://doi.org/10.1029/95JA00843
  23. 23. Zhou C., Li W., Thorne R.M., Bortnik J., Ma Q., An X., Zhang X.-J., Angelopoulos V., Ni B., Gu X., Fu S., Zhao Z. Excitation of dayside chorus waves due to magnetic field line compression in response to interplanetary shocks // J. Geophys. Res. – Space. V. 120. N 10. P. 8327–8338. 2015. https://doi.org/10.1002/2015JA021530
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library