RAS PhysicsГеомагнетизм и аэрономия Geomagnetism and Aeronomy

  • ISSN (Print) 0016-7940
  • ISSN (Online) 3034-5022

Study of Geomagnetic Disturbances from Satellite Data in Magnetic Storm on 8–9 March 1970

PII
10.31857/S0016794024050046-1
DOI
10.31857/S0016794024050046
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 64 / Issue number 5
Pages
635-648
Abstract
In this study, we consider historical geomagnetic satellite data obtained during a strong magnetic storm on March 8−9, 1970. In addition to the data of the Soviet satellite Kosmos-321, data from the American satellite OGO-6, which performed geomagnetic measurements at the same time, were used. We analyzed time variations of external magnetic fields recorded in satellite and ground-based observations of the magnetic field. The research also gave impetus to the creation of the improved software implementation of the auroral oval model APM, which enables reconstruction of its position and precipitation intensity in both the past and near real time. The magnetic variations originating in the near-Earth space from various sources were identified. In particular, we revealed the signatures of the storm-time ring current and equatorial and auroral electrojects. The paper highlights the enduring value of historical data of magnetic field observations stored in data centers and continuously digitized by their staff.
Keywords
внешнее магнитное поле морфология возмущений моделирование аврорального овала спутниковые наблюдения исторические данные
Date of publication
15.10.2024
Year of publication
2024
Number of purchasers
0
Views
49

References

  1. 1. Воробьев А.В., Пилипенко В.А., Решетников А.Г., Воробьева Г.Р., Белов М.Д. Веб-ориентированная визуализация геофизических параметров в области аврорального овала // Научная визуализация. Т. 12. № 3. С. 108–118. 2020. https://doi.org/10.26583/sv.12.3.10
  2. 2. Воробьев А.В., Соловьев А.А., Пилипенко В.А., Воробьева Г.Р. Интерактивная компьютерная модель для прогноза и анализа полярных сияний // Солнечно-земная физика. Т. 8. № 2. С. 93–100. 2022. https://doi.org/10.12737/szf-82202213
  3. 3. Долгинов Ш.Ш., Жигалов Л.Н., Струнникова Л.В., Фельдштейн Я.И., Черевко Т.Н., Шарова В.А. Магнитная буря 8-10 марта 1970 г. по наблюдениям на спутнике “Космос-321” и на поверхности Земли. I. Морфология возмущения // Геомагнетизм и аэрономия. Т. 12. № 6. С. 1046–1058. 1972.
  4. 4. Долгинов Ш.Ш., Козлов А.Н., Колесова В.И. и др. Каталог измеренных и вычисленных значений модуля напряженности геомагнитного поля вдоль орбит спутника “Космос-321”. М.: Наука, 179 c. 1976.
  5. 5. Долгинов Ш.Ш., Наливайко В.И., Тюрмин А.В., Чинчевой М.М., Бродская Р.Е., Злотин Г.Н., Кикнадзе И.Н., Тюрмина Л.О. Каталог измеренных и вычисленных значений модуля напряженности геомагнитного поля вдоль орбит спутника “Космос-49”. 24 октября – 4 ноября. Ред. В.П. Орлов. М.: ИЗМИРАН (в 3-х томах). 1967.
  6. 6. Ермолаев Ю.И., Ермолаев М.Ю., Лодкина И.Г., Николаева Н.С. Статистическое исследование гелиосферных условий, приводящих к магнитным бурям // Космич. исслед. Т. 45. № 1. С. 3-11. 2007. https://doi.org/10.1134/S0010952507010017
  7. 7. Соловьев А.А. Некоторые задачи геомагнетизма, решаемые по данным наземных и спутниковых наблюдений // Геология и геофизика. Т. 64. № 9. С. 1330–1356. 2023. https://doi.org/10.15372/GiG2023112
  8. 8. Alken P., Thébault E., Beggan C.D. et al. International Geomagnetic Reference Field: the thirteenth generation // Earth, Planets and Space. V. 73. № 49. 2021. https://doi.org/10.1186/s40623-020-01288-x
  9. 9. Cain J.C., Hendricks S.J., Hudson W.V., Langel R.A. A proposed model for the international geomagnetic reference field-1965 // J. Geomagn. Geoelectr. V. 19. № 4. P. 335–355. 1967. https://doi.org/10.5636/jgg.19.335
  10. 10. Formisano V. On the March 7–8, 1970, event // J. Geophys. Res.:Space Physics. V. 78. № 7. P. 1198–1202. 1973. https://doi.org/10.1029/JA078i007p01198
  11. 11. Friis-Christensen E., Lühr H., Hulot G. Swarm: A constellation to study the Earth’s magnetic field // Earth, Planets and Space. V. 58. № 4. P. 351–358. 2006. https://doi.org/10.1186/BF03351933
  12. 12. Holme R., James M.A., Lühr H. Magnetic field modelling from scalar-only data: Resolving the Backus effect with the equatorial electrojet // Earth, Planets and Space. V. 57. № 12. P. 1203–1209. 2005. https://doi.org/10.1186/BF03351905
  13. 13. Jackson J.E., Vette J.I. OGO Program Summary. Washington, D.C., USA: NASA, 330 р. 1975.
  14. 14. Khokhlov A., Hulot G., Le Mouel J.-L. On the Backus effect—I // Geophys. J. Int. V. 130. № 3. P. 701–703. 1997. https://doi.org/10.1111/j.1365-246X.1997.tb01864.x
  15. 15. Kozyreva O.V., Pilipenko V.A., Soloviev A.A., Engebretson M. J. Virtual magnetograms - a tool for the study of geomagnetic response to the solar wind/IMF driving // Russ. J. Earth Sci. V. 19. № 2. 2019. https://doi.org/10.2205/2019ES000654
  16. 16. Krasnoperov R., Peregoudov D., Lukianova R., Soloviev A., Dzeboev B. Early Soviet satellite magnetic field measurements in the years 1964 and 1970 // Earth Syst. Sci. Data. V. 12. № 1. P. 555–561. 2020. https://doi.org/10.5194/essd-12-555-2020
  17. 17. Love J.J., Chulliat A. An international network of magnetic observatories // Eos. V. 94. № 42. P. 373–374. 2013. https://doi.org/10.1002/2013EO420001
  18. 18. Lühr H., Maus S., Rother M. Noon-time equatorial electrojet: its spatial features as determined by the CHAMP satellite // J. Geophys. Res. V. 109. № A1. 2004. https://doi.org/10.1029/2002JA009656
  19. 19. Mandea M. Magnetic satellite missions: where have we been and where are we going? // Cr. Geoscience. V. 338. № 14–15. P. 1002–1011. 2006. https://doi.org/10.1016/j.crte.2006.05.011
  20. 20. Meng X., Tsurutani B.T., Mannucci A.J. The solar and interplanetary causes of superstorms (minimum Dst ≤ −250 nT) during the space age // J. of Geophys. Res.: Space Physics. V. 124. № 6. P. 3926–3948. 2019. https://doi.org/10.1029/2018JA026425
  21. 21. Newell P.T., Liou K., Zhang Y., Sotirelis T., Paxton L.J., Mitchell E. J. OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels // Space Weather. V. 12. № 6. P. 368–379. 2014. https://doi.org/10.1002/2014SW001056
  22. 22. Olsen N., Hulot G., Sabaka T.J. Measuring the Earth’s Magnetic Field from Space: Concepts of Past, Present and Future Missions // Space Sci. Rev. V. 155. P. 65–93. 2010. https://doi.org/10.1007/s11214-010-9676-5
  23. 23. Petrov V.G., Krasnoperov R.I. The aspects of K-index calculation at Russian Geomagnetic Observatories // Russ. J. Earth Sci. V. 20. № 6. 2020. https://doi.org/10.2205/2020ES000724
  24. 24. Skuridin G.A. Mastery of outer space in the USSR, 1957–1967 (translation of “Osvoyeniye kosmicheskogo Prostranstva v SSSR, 1957–1967”, Moscow, “Nauka” Press, 1971). Washington, D.C., USA: NASA. 1975.
  25. 25. Soloviev A.A., Peregoudov D.V. Verification of the geomagnetic field models using historical satellite measurements obtained in 1964 and 1970 // Earth, Planets and Space. V. 74. № 187. 2022. https://doi.org/10.1186/s40623-022-01749-5
  26. 26. Stern D.P., Bredekamp J.H. Error enhancement in geomagnetic models derived from scalar data // J. Geophys. Res. V. 80. № 13. P. 1776–1782. 1975. https://doi.org/10.1029/JA080i013p01776
  27. 27. Vorobev A.V., Pilipenko V.A., Krasnoperov R.I., Vorobeva G.R., Lorentzen D.A. Short-term forecast of the auroral oval position on the basis of the “virtual globe” technology // Russ. J. Earth Sci. V. 20. № 6. 2020. https://doi.org/10.2205/2020ES000721
  28. 28. Vorobev A.V., Soloviev A.A., Pilipenko V.A., Vorobeva G.R. Internet application for interactive visualization of geophysical and space data: approach, architecture, technologies // Journal of the Earth and Space Physics. V. 48. № 4. P. 151–160. 2023. https://doi.org/10.22059/jesphys.2023.350281.1007467
  29. 29. Vorobjev V.G., Yagodkina O.I., Katkalov Yu.V. Auroral Precipitation Model and its applications to ionospheric and magnetospheric studies // J. Atmos. Sol.- Terr. Phys. V. 102. P. 157–171. 2013. https://doi.org/10.1016/j.jastp.2013.05.007
  30. 30. Yamazaki Y., Maute A. Sq and EEJ – A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents // Space Sci. Rev. V. 206. P. 299–405. 2017. https://doi.org/10.1007/s11214-016-0282-z
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library