RAS PhysicsГеомагнетизм и аэрономия Geomagnetism and Aeronomy

  • ISSN (Print) 0016-7940
  • ISSN (Online) 3034-5022

Solar Wind Low-Temperature Intervals and Forbush Decreases: A Statistical Comparison

PII
10.31857/S0016794024050029-1
DOI
10.31857/S0016794024050029
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 64 / Issue number 5
Pages
608-623
Abstract
Based on a large amount of experimental material, the hourly values of the solar wind speed and proton temperature were compared; the expected proton temperature and the temperature index (the ratio of the observed temperature to the expected one) were calculated. Using the Cosmic Ray Variations Database, from 1997 to 2022 low-temperature intervals were identified (intervals lasting more 2 hours, in which hourly values of the temperature index less than 0.5). The work investigated: a) statistical relationships between the parameters of low-temperature intervals and the characteristics of Forbush decreases associated with different types of solar sources; b) distributions of parameters of low-temperature intervals for interplanetary disturbances containing or not containing a magnetic cloud. The results obtained showed that with increasing duration of the low-temperature interval, the proportion of events associated with ejections from active regions increases, and the proportion of recurrent events and events associated with ejections outside active regions decreases. The correlation of the parameters of low-temperature intervals with the amplitude of Forbush decreases is weak, with the equatorial anisotropy of cosmic rays – moderate, with the north-south anisotropy – significant. The solar wind speed and magnetic field strength correlate moderately with the temperature index, and the correlation of the range of these parameters with the duration of low-temperature intervals is significant or strong.
Keywords
Форбуш-понижения солнечный ветер межпланетные возмущения космические лучи
Date of publication
15.10.2024
Year of publication
2024
Number of purchasers
0
Views
41

References

  1. 1. Абунина М.А., Белов А.В., Шлык Н.С., Ерошенко Е.А., Абунин А.А., Оленева В.А., Прямушкина И.И., Янке В.Г. Форбуш-эффекты, созданные выбросами солнечного вещества с магнитными облаками // Геомагнетизм и аэрономия. Т. 61. № 5. С. 572–582. 2021. https://doi.org/10.31857/S0016794021050023
  2. 2. Белов А.В., Ерошенко Е.А., Янке Г.В., Оленева В.А., Абунина М.А., Абунин А.А. Метод глобальной съемки для мировой сети нейтронных мониторов // Геомагнетизм и аэрономия. Т. 58. № 3. С. 374–389. 2018. https://doi.org/10.7868/S0016794018030082
  3. 3. Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномасштабных явлений солнечного ветра для периода 1976–2000 гг. // Космич. исслед. Т. 47. № 2. С. 99–113. 2009.
  4. 4. Мелкумян А.А., Белов А.В., Абунина М.А., Абунин А.А., Ерошенко Е.А., Оленева В.А., Янке В.Г. Основные свойства Форбуш-эффектов, связанных с высокоскоростными потоками из корональных дыр // Геомагнетизм и аэрономия. Т. 58. № 2. С. 163–176. 2018. https://doi.org/10.7868/S0016794018020025
  5. 5. Мелкумян А.А., Белов А.В., Абунина М.А., Абунин А.А., Ерошенко Е.А., Оленева В.А., Янке В.Г. Поведение скорости и температуры солнечного ветра в межпланетных возмущениях, создающих Форбуш-понижения // Геомагнетизм и аэрономия. Т. 60. № 5. С. 547–556. 2020. https://doi.org/10.31857/S0016794020040100
  6. 6. Шлык Н.С., Белов А.В., Абунина М.А., Ерошенко Е.А., Абунин А.А., Оленева В.А., Янке В.Г. Влияние взаимодействующих возмущений солнечного ветра на вариации галактических космических лучей // Геомагнетизм и аэрономия. Т. 61. № 6. С. 694–703. 2021. https://doi.org/10.31857/S0016794021060134
  7. 7. Belov A.V., Eroshenko E.A., Oleneva V.A., Struminsky A.B., Yanke V.G. What determines the magnitude of forbush decreases? // Adv. Space Res. V. 27. № 3. P. 625–630. 2001. https://doi.org/10.1016/S0273-1177 (01)00095-3
  8. 8. Belov A.V. Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena // Proc. IAU Symposium. № 257. P. 119–130. 2009. https://doi.org/10.1017/S1743921309029676
  9. 9. Belov A., Abunin A., Abunina M., Eroshenko E., Oleneva V., Yanke V., Papaioannou A., Mavromichalaki H. Galactic cosmic ray density variations in Magnetic Clouds // Solar Phys. V. 290. P. 1429–1444. 2015. https://doi.org/10.1007/s11207-015-0678-z
  10. 10. Bothmer V., Zhukov A. The Sun as the prime source of space weather. In: Space Weather- Physics and Effects. Springer Praxis Books. Springer, Berlin, Heidelberg. P. 31–102. 2007. https://doi.org/10.1007/978-3-540-34578-7_3
  11. 11. Burlaga L.F., Ogilvie K.W. Heating of solar wind // ApJ. V. 159. P. 659–670. 1970. https://doi.org/10.1086/150340
  12. 12. Burlaga L., Sittler E., Mariani F., Schwenn R.J. Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations // J. Geophys. Res. V. 86. P. 6673–6684. 1981. https://doi.org/10.1029/JA086iA08p06673
  13. 13. Burlaga L., Klein L., Sheeley N.R. Jr., Michels D.J., Howard R.A., Koomen M.J., Schwenn R., Rosenbauer H. A magnetic cloud and a coronal mass ejection // Geophys. Res. Lett. V. 9. № 12. P. 1317–1320. 1982. https://doi.org/10.1029/GL009i012p01317
  14. 14. Cane H.V. CMEs and Forbush decreases // Space Sci. Revs. V. 93. № 1–2. P. 55–77. 2000. https://doi.org/10.1023/A:1026532125747
  15. 15. Chaddock R.E. Principles and Methods of Statistics (1st ed.). Boston: Houghton Mifflin Company, 471 p. 1925.
  16. 16. Demouline P. Why Do Temperature and Velocity Have Different Relationships in the Solar Wind and in Interplanetary Coronal Mass Ejections? // Sol. Phys. V. 257. P. 169–184. 2009. https://doi.org/10.1007/s11207-009-9338-5
  17. 17. Elliott H.A., McComas D.J., Schwadron N.A., Gosling J.T., Skoug R.M., Gloeckler G., Zurbuchen T.H. An improved expected temperature formula for identifying interplanetary coronal mass ejections // J. Geophys. Res. V. 110. № A4. ID A04103. 2005. https://doi.org/10.1029/2004JA010794
  18. 18. Elliott H.A., Henney C.J., McComas D.J., Smith C.W., Vasquez B.J. Temporal and radial variation of the solar wind temperature-speed relationship // J. Geophys. Res. Space. V. 117. ID A09102. 2012. https://doi.org/10.1029/2011JA017125
  19. 19. Elliott H.A., McComas D.J., DeForest C.E. Long-term trends in the solar wind proton measurements // Astrophys.J. V. 832. № 1. ID. 66. 2016. https://doi.org/10.3847/0004-637X/832/1/66
  20. 20. Forbush S.E. On the effects in the cosmic-ray intensity observed during magnetic storms // Phys. Rev. V. 51. P. 1108–1109. 1937. https://doi.org/10.1103/PhysRev.51.1108.3
  21. 21. Gopalswamy N., Akiyama S., Yashiro S., Mäkelä P. Coronal Mass Ejections from Sunspot and non-Sunspot Regions. In Magnetic Coupling between the Interior and the Atmosphere of the Sun, eds. Hasan S. S. and Rutten R. J., Astrophysics and Space Science Proc., Springer Berlin Heidelberg. P. 289–307. 2010а. https://doi.org/10.1007/978-3-642-02859-5_24
  22. 22. Gopalswamy N., Xie H., Mäkelä P., Akiyama S., Yashiro S., Kaiser M.L., Howard R.A., Bougeret J.-L. Interplanetary shocks lacking type II radio bursts // Astrophys. J. V. 710. № 2. P. 1111–1126. 2010b. https://doi.org/10.1088/0004-637X/710/2/1111
  23. 23. Gosling J.T., Pizzo V., Bame S.J. Anomalously low proton temperatures in the solar wind following interplanetary shock waves – Evidence for magnetic bottles? // J. Geophys. Res. V. 78. № 13. P. 2001–2009. 1973. https://doi.org/10.1029/JA078i013p02001
  24. 24. Gosling J.T. Coronal mass ejections and magnetic flux ropes in interplanetary space // Geophys. Monogr. V. 58. P. 343–364, 1990. https://doi.org/10.1029/GM058p0343
  25. 25. Huttunen K.E.J., Schwenn R., Bothmer V., Koskinen H.E.J. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23 // Annales Geophysicae. V. 23. № 2. P. 625–641. 2005. https://doi.org/10.5194/angeo-23-625-2005
  26. 26. Iucci N., Parisi M., Storini M., Villoresi G. Forbush decreases: origin and development in the interplanetary space // Nuovo Cimento C. V. 2. P. 1–52. 1979.
  27. 27. Kim R.S., Gopalswamy N., Cho K.S., Moon Y.J., Yashiro S. Propagation Characteristics of CMEs associated with Magnetic Clouds and Ejecta // Solar Physics. V. 284. № 1. P.77–88. 2013. https://doi.org/10.1007/s11207-013-0230-y
  28. 28. King J.H., Papitashvili N.E. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data // J. Geophys. Res. V. 110. I. A2. A02104. 2005. https://doi.org/10.1029/2004JA010649
  29. 29. Kumar A., Badruddin. Interplanetary coronal mass ejections, associated features, and transient modulation of galactic cosmic rays // Solar Phys. V. 289. P. 2177–2205. 2014. https://doi.org/10.1007/s11207-013-0465-7
  30. 30. Lockwood J.A. Forbush decreases in the cosmic radiation // Space Sci. Revs. V. 12. № 5. P. 658–715. 1971.
  31. 31. Lopez R.E., Freeman J.W. The solar wind proton temperature-velocity relationship // J. Geophys. Res. V. 91. P. 1701–1705. 1986. https://doi.org/10.1029/JA091iA02p01701
  32. 32. Lopez R.E. Solar cycle invariance in solar wind proton temperature relationships // J. Geophys. Res. V. 92. P. 11189–11194. 1987. https://doi.org/10.1029/JA092iA10p11189
  33. 33. Lynch B.J., Zurbuhen T.H., Fisk L.A., Antiochos S.K. Internal structure of magnetic clouds: Plasma and composition // Journal of Geophysical Research Space Physics. V. 108. № A6. ID 1239. 2003. https://doi.org/10.1029/2002JA009591
  34. 34. Lynch B.J., Gruesbeck J.R., Zurbuchen T.H., Antiochos S.K. Solar cycle–dependent helicity transport by magnetic clouds // Journal of Geophysical Research. V. 110. № A8. ID A08107. 2005. https://doi.org/10.1029/2005JA011137
  35. 35. Marubashi K., Lepping R.P. Long-duration magnetic clouds: a comparison of analyses using torus- and cylinder-shaped flux ropes models // Annales Geophysicae. V. 25. № 11. P. 2453–2477. 2007. https://doi.org/10.5194/angeo-25-2453-2007
  36. 36. Matzka J., Stolle C., Yamazaki Y., Bronkalla O., Morschhauser A. The geomagnetic Kp index and derived indices of geomagnetic activity // Space Weather. V. 19. № 5. Article ID e2020SW002641. 2021. https://doi.org/10.1029/2020SW002641
  37. 37. Matthaeus W.H., Elliot H.A., McComas D.J. Correlation of speed and temperature in the solar wind // J. Geophys. Res. V. 111. № A10. ID A10103. 2006. https://doi.org/10.1029/2006JA011636
  38. 38. Melkumyan A.A., Belov A.V., Abunina M.A., Abunin A.A., Eroshenko E.A., Yanke V.G., Oleneva V.A. Solar wind temperature-velocity relationship over the last five solar cycles and Forbush decreases associated with different types of interplanetary disturbance // MNRAS. V. 500. № 3. P. 2786–2797. 2021. https://doi.org/10.1093/mnras/staa3366
  39. 39. Melkumyan A.A., Belov A.V., Abunina M.A., Shlyk N.S., Abunin A.A., Oleneva V.A., Yanke V.G. Forbush decreases associated with coronal mass ejections from active and non-active regions: statistical comparison // MNRAS. V. 515. № 3. P. 4430–4444. 2022. https://doi.org/10.1093/mnras/stac2017
  40. 40. Neugebauer M., Snyder C.W. Mariner 2 Observations of the solar wind: 1. Average properties // J. Geophys. Res. V. 71. P. 4469–4484. 1966. https://doi.org/10.1029/JZ071i019p04469
  41. 41. Neugebauer M., Steinberg J.T., Tokar R.L., Barraclough B.L., Dors E.E., Wiens R.C., Gingerich D.E., Luckey D., Whiteaker D.B. Genesis on-board determination of the solar wind flow regime // Space Sci. Rev. V. 105. P. 661–679. 2003. https://doi.org/10.1023/A:1024478129261
  42. 42. Richardson I.G., Cane H.V. Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta // J. Geophys. Res. V. 100. № A12. P. 23397–23412. 1995a. https://doi.org/10.1029/95JA02684
  43. 43. Richardson I.G., Cane H.V. Regions of abnormally low proton temperature as signatures of ejecta in the solar wind and their solar cycle dependence / 24th ICRC. Rome, Italy, 1995. V. 4. P. 868–871. 1995b.
  44. 44. Richardson I.G. Energetic Particles and Corotating Interaction Regions in the Solar Wind // Space Sci. Rev. V. 111. № 3. P. 267–376. 2004. https://doi.org/10.1023/B:SPAC.0000032689.52830.3e
  45. 45. Richardson I.G., Cane H.V. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties // Solar Phys. V. 264. № 1. P. 189–237. 2010. https://doi.org/10.1007/s11207-010-9568-6
  46. 46. Shlyk N.S, Belov A.V., Abunina M.A., Abunin A.A., Oleneva V.A., Yanke V.G. Forbush decreases caused by paired interacting solar wind disturbances // Monthly Notices of the Royal Astronomical Society. V. 511. № 4. P. 5897–5908. 2022. https://doi.org/10.1093/mnras/stac478
  47. 47. Zhang G., Burlaga L. Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases // J. Geophys. Res. V. 93. № A4. P. 2511–2518. 1988. https://doi.org/10.1029/JA093iA04p02511
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library