RAS PhysicsГеомагнетизм и аэрономия Geomagnetism and Aeronomy

  • ISSN (Print) 0016-7940
  • ISSN (Online) 3034-5022

Determination of the Velocity of Ionospheric Disturbances from the Dynamics of Additional U-Shaped Traces on Ionograms

PII
10.31857/S0016794024020091-1
DOI
10.31857/S0016794024020091
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 64 / Issue number 2
Pages
265-271
Abstract
One of the approaches to solving the inverse problem of determining the parameters of ionospheric disturbances is the multiple solution of the “homing-in” problem with the subsequent comparison of the simulation results with the observed data (ionograms). However, this approach is usually associated with significant calculation time costs, which makes it impossible to process large arrays of sounding data. The method described in this paper makes it possible to quickly determine the horizontal velocity of the ionospheric disturbance by descent rate of an additional U-shaped trace moving to lower virtual heights on the vertical ionograms: in order to calculate the velocity, it is proposed to use the results of the ray tracing obtained for the reference background profiles with the disturbances superimposed on them.
Keywords
Date of publication
01.02.2024
Year of publication
2024
Number of purchasers
0
Views
54

References

  1. 1. Вертоградов Г.Г., Урядов В.П., Выборнов Ф.И. Моделирование распространения декаметровых радиоволн в условиях волновых возмущений концентрации электронов // Изв. вузов. Радиофизика. 2018. Т. 61. № 6. С. 462—473.
  2. 2. Дэвис К. Радиоволны в ионосфере. М.: Мир, 1973. 503 с.
  3. 3. Cervera M.A., Harris T.J. Modeling ionospheric disturbance features in quasi-vertically incident ionograms using 3-D magnetoionic ray tracing and atmospheric gravity waves // J. Geophys. Res. — Space. 2014. V. 119. № 1. P. 431—440.
  4. 4. Cooper J., Cummack C.H. The analysis of travelling ionospheric disturbance with nonlinear ionospheric response // J. Atmos. Solar Terr. Phys. 1986. V. 48. № 1. P. 61—64.
  5. 5. Laryunin O. Studying characteristics of traveling ionospheric disturbances using U-shaped traces on vertical incidence ionograms // Adv. Space Res. 2021. V. 67. № 3. P. 1085—1089.
  6. 6. Lobb R.J., Titheridge J.E. The effects of travelling ionospheric disturbances on ionograms // J. Atmos. Terr. Phys. 1977. V. 39. № 2. P. 129—134.
  7. 7. Lou P., Wei N., Guo L., Feng J., Li X., Yang L. Numerical study of traveling ionosphere disturbances with vertical incidence data // Adv. Space Res. 2020. V. 65. № 4. P. 1306—1320.
  8. 8. Munro G.H., Heisler L.H. Cusp type anomalies in variable frequency ionospheric records // Aust. J. Phys. 1956. V. 9. P. 343—357.
  9. 9. Vybornov F., Sheiner O., Kolchev A., Zykov E., Chernov A., Shumaev V., Pershin A. On the results of the special experiment on the registration of traveling ionospheric disturbances by a system of synchronously operating chirp ionosondes // Atmosphere. 2022. V. 13. № 84.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library