RAS PhysicsГеомагнетизм и аэрономия Geomagnetism and Aeronomy

  • ISSN (Print) 0016-7940
  • ISSN (Online) 3034-5022

Development of a Method for Recovery of the Energy Spectra of Precipitating Electrons from the Data of Measurements in the Atmosphere

PII
10.31857/S0016794023600564-1
DOI
10.31857/S0016794023600564
Publication type
Status
Published
Authors
Volume/ Edition
Volume 63 / Issue number 5
Pages
638-643
Abstract
Regular measurements of fluxes of charged particles in the Earth’s atmosphere conducted by the Lebedev Physical Institute (LPI) made it possible to register since 1963 more than 500 cases of precipitation of energetic electrons in the northern polar latitudes. The obtained experimental data represent the world’s only database on the precipitation of electrons registered directly in the Earth’s atmosphere. Primary precipitating electrons are absorbed in the upper layers of the atmosphere. However, the fluxes of secondary photons generated by them can penetrate deep into the atmosphere, sometimes to heights of ~20 km, which are accessible for balloon measurements by the Lebedev Physical Institute. This paper presents a new technique for reconstructing the energy spectrum of precipitating electrons developed on the basis of the Monte Carlo simulation of the processes of electron propagation in the atmosphere. The applicability of the technique to the accumulated experimental data is shown, and new results are presented for individual events recorded in the atmosphere.
Keywords
Date of publication
01.09.2023
Year of publication
2023
Number of purchasers
0
Views
48

References

  1. 1. – Agostinelli S., Allison J., Amako K. et al. Geant4 – a simulation toolkit //Nucl. Instrum. Meth. A. V. 506. № 3. P. 250–303. 2003. https://doi.org/10.1016/S0168-9002 (03)01368-8
  2. 2. – Anderson K.A. Soft radiation events at high altitude during the magnetic storm of August 29–30, 1957 // Phys. Rev. V. 111. P. 1397–1405. 1958. https://doi.org/10.1103/PhysRev.111.1397
  3. 3. – Arsenovic P., Rozanov E., Stenke A., Funke B., Wissing J., Mursula K. et al. The influence of middle range energy electrons on atmospheric chemistry and regional climate // J. Atmos. Sol.-Terr. Phy. V. 149. P. 180–190. 2016. https://doi.org/10.1016/j.jastp.2016.04.008
  4. 4. – Bazilevskaya G.A., Krainev M.B., Stozhkov Yu.I., Svirzhevskaya A.K., Svirzhevsky N.S. Long-term Soviet program for the measurement of ionizing radiation in the atmosphere // J. Geomagn. Geoelectr. V. 43 (Suppl.). P. 893–900. 1991. https://doi.org/10.5636/jgg.43.Supplement2_893
  5. 5. – Bazilevskaya G.A., Svirzhevskaya A.K. On the stratospheric measurements of cosmic rays // Space Sci. Rev. V. 85. P. 431–521. 1998.
  6. 6. – Bazilevskaya G.A., Kalinin M.S., Krainev M.B., Makhmutov V.S., Stozhkov Y.I., Svirzhevskaya A.K., Svirzhevsky N.S., Gvozdevsky B.B. Temporal characteristics of energetic magnetospheric electron precipitation as observed during long-term balloon observations // J. Geophys. Res. – Space. V. 125. № 11. e28033. 2020. https://doi.org/10.1029/2020JA028033
  7. 7. – Bazilevskaya G.A., Dyusembekova A.S., Kalinin M.S., Krainev M.B., Makhmutov V.S., Svirzhevskaya A.K., Svirzhevsky N.S., Stozhkov Yu.I., Tulekov E.A. Comparison of the results on precipitation of high-energy electrons in the stratosphere and on satellites // Cosmic Res. V. 59. № 1. P. 24–29. 2021. https://doi.org/10.1134/S0010952521010020
  8. 8. – Charakhchyan A.N. Investigation of stratosphere cosmic ray intensity fluctuations induced by processes on the Sun // Usp. Fiz. Nauk. V. 83. P. 35–62. 1964.
  9. 9. – Grankin D., Mironova I., Bazilevskaya G., Rozanov E., Egorova T. Atmospheric Response to EEP during Geomagnetic Disturbances // Atmosphere. V. 14. № 2. P. 273. 2023. https://doi.org/10.3390/atmos14020273
  10. 10. – Lazutin L.L., Khrushchinsky A.A., Kozelova T.V. et al. SAMBO-GEOS: On three-dimensional substorm dynamics – A case study for 4 March 1979 // Adv. Space Res. V. 5. № 4. P. 171–174. 1985. https://doi.org/10.1016/0273-1177 (85)90134-6
  11. 11. – Makhmutov V.S., Bazilevskaya G.A., Krainev M.B., Storini M. Long-term cosmic ray experiment in the atmosphere: energetic electron precipitation events during the 20–23 solar activity cycles // Proc. 27th Int. Cosmic Ray Conf., Hamburg, SH. P. 4196–4199. 2001.
  12. 12. – Makhmutov V.S., Bazilevskaya G.A., Desorgher L., Flückiger E. Precipitating electron events in October 2003 as observed in the polar atmosphere // Adv. Space Res. V. 38. № 8. P. 1642–1646. 2006. https://doi.org/10.1016/j.asr.2006.01.016
  13. 13. – Makhmutov V.S., Bazilevskaya G.A., Stozhkov Y.I., Svirzhevskaya A.K., Svirzhevsky N.S. Catalogue of Electron Precipitation Events as Observed in the Long-Duration Cosmic Ray Balloon Experiment // J. Atmos. Sol.-Terr. Phy. V. 149. P. 258–276. 2016. https://doi.org/10.1016/j.jastp.2015.12.006
  14. 14. – Maurchev E.A., Mikhalko E.A., Germanenko A.V., Balabin Yu.V., Gvozdevsky B.B. RUSCOSMICS Software Package as a tool for estimating the Earth’s atmosphere ionization rate by cosmic ray protons // B. Russ. Acad. Sci. Phys. V. 83. № 5. P. 653–656. 2019. https://doi.org/10.3103/S1062873819050241
  15. 15. – Maurchev E.A., Baltabin Yu.V., Germanenko A.V., Gvozdevsky B.B. Modeling the transport of Solar Cosmic Ray Proton Fluxes through Earth’s Atmosphere for the GLE42 and GLE44 Events // B. Russ. Acad. Sci. Phys. V. 85. P. 273–276. 2021a. https://doi.org/10.3103/S1062873821030151
  16. 16. – Maurchev E.A., Balabin Yu.V., Germanenko A.V., Mikhalko E.A., Gvozdevsky B.B. Calculating the Rate of Ionization during a GLE Event with a Global Model of Earth’s Atmosphere and Estimating of the Contribution to this Process from Galactic Cosmic Ray Particles with Z > 2 // B. Russ. Acad. Sci. Phys. V. 85. P. 277–281. 2021b. https://doi.org/10.3103/S1062873821030163
  17. 17. – Maurchev E.A., Mikhalko E.A., Balabin Yu.V., Germanenko A.V., Gvozdevsky B.B. Estimated equivalent radiation dose at different altitudes in Earth’s atmosphere // Sol-Terr. Phys. V. 8. № 3. P. 27–31. 2022. https://doi.org/10.12737/stp-83202204
  18. 18. – Millan R.M., McCarthy M.P., Sample J.G. et al. The balloon array for RBSP relativistic electron losses (BARREL) // Space Sci. Rev. V. 179. P. 503–530. 2013. https://doi.org/10.1007/s11214-013-9971-z
  19. 19. – Mironova I., Artamonov A., Bazilevskaya G., Rozanov E., Makhmutov V., Mishev A., Karagodin A. Ionization of the polar atmosphere by energetic electron precipitation retrieved from balloon measurements // Geophys. Res. Lett. V. 46. P. 990–996. 2019. https://doi.org/10.1029/2018GL079421
  20. 20. – Picone J.M., Hedin A.E. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues // J. Geophys. Res. V. 107. № A12. P. 1468. 2002. https://doi.org/10.1029/2002JA009430
  21. 21. – Sinnhuber M., Nieder H., Wieters N. Energetic Particle Precipitation and the Chemistry of the Mesosphere/Lower Thermosphere // Surv. Geophys. V. 33. P. 1281–1334. 2012. https://doi.org/10.1007/s10712-012-9201-3
  22. 22. – Stozhkov Y.I., Svirzhevsky N.S., Bazilevskaya G.A., Kvashnin A.N., Makhmutov V.S., Svirzhevskaya A.K. Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere // Adv. Space Res. V. 44. № 10. P. 1124–1137. 2009. https://doi.org/10.1016/j.asr.2008.10.038
  23. 23. – Winckler J.R., Bhavsar P.D., Anderson K.A. A study of the precipitation of energetic electrons from the geomagnetic field during magnetic storms // J. Geophys. Res. V. 67. № 10. P. 3717–3735. 1962. https://doi.org/10.1029/JZ067i010p03717
  24. 24. – Woodger L.A., Halford A.J., Millan R.M. et al. A summary of the barrel campaigns: Technique for studying electron precipitation // J. Geophys. Res. – Space. V. 120. P. 4922–4935. 2015. https://doi.org/10.1002/2014JA020874
  25. 25. – http://www.cern.ch/geant4
  26. 26. – https://ruscosmics.ru/FIANRSCSM/
  27. 27. – https://satdat.ngdc.noaa.gov/sem/poes/data/
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library