- Код статьи
- 10.31857/S0016794022600570-1
- DOI
- 10.31857/S0016794022600570
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 63 / Номер выпуска 1
- Страницы
- 73-79
- Аннотация
- По результатам измерений потока коротковолновой отраженной солнечной радиации, проведенных с борта ИСЗ “Метеор – М” № 2 в 2014–2019 гг., получены среднемесячные значения планетарного альбедо на верхней границе атмосферы Земли и значения средних альбедо полушарий. Глобально осредненное альбедо демонстрирует увеличение со временем, подтверждаемое наличием статистически значимого линейного тренда. Показано, что этот тренд не связан с изменением средней приповерхностной температуры планеты. Возможно, что повышение альбедо объясняется увеличением облачности, вызванным ростом потока галактических космических лучей на спаде цикла солнечной активности.
- Ключевые слова
- Дата публикации
- 01.01.2023
- Год выхода
- 2023
- Всего подписок
- 0
- Всего просмотров
- 68
Библиография
- 1. − Авакян С.В., Воронин Н.А. О возможном физическом механизме воздействия солнечной и геомагнитной активности на явления в нижней атмосфере // Исследования Земли из космоса. № 2. С. 28–33. 2006.
- 2. − Богданов М.Б., Червяков М.Ю., Кошель А.А. Десятилетний ряд глобального распределения альбедо по данным ИСЗ “Метеор-М” // Современные проблемы дистанционного зондирования Земли из космоса. Т. 19. № 2. С. 243–251. 2022.
- 3. − Жеребцов Г.А., Коваленко В.А. Влияние солнечной активности на погодно-климатические характеристики тропосферы // Солнечно-земная физика. Вып. 21. С. 98–106. 2012.
- 4. − Кондратьев К.Я., Никольский Г.А. Солнечная активность и климат. 1. Данные наблюдений. Конденсационная и озонная гипотезы // Исследования Земли из космоса. № 5. С. 3–17. 1995.
- 5. – Крымский Г.Ф. Космические лучи и околоземное пространство // Солнечно-земная физика. Вып. 2(115). С. 42–45. 2002.
- 6. – Крымский Г.Ф., Петухов С.И., Павлов Г.С. Моделирование конденсации водяного пара. Четырехточечный потенциал // Оптика атмосферы и океана. 2015. Т. 28. № 12. С. 1059–1064. 2015. https://doi.org/10.15372/AOO20151202
- 7. − Распопов О.М., Веретененко С.В. Солнечная активность и космические лучи: влияние на облачность и процессы в нижней атмосфере (памяти и к 75-летию М.И. Пудовкина) // Геомагнетизм и аэрономия. Т. 49. № 2. С. 147–155. 2009.
- 8. − Скляров Ю.А., Воробьев В.А., Котума А.И., Червяков М.Ю., Фейгин В.М. Измерения компонентов радиационного баланса Земли с ИСЗ “Метеор-М” № 1. Аппаратура ИКОР-М // Современные проблемы дистанционного зондирования Земли из космоса. Т. 9. № 2. С. 173–180. 2012а.
- 9. − Скляров Ю.А., Воробьев В.А., Котума А.И., Червяков М.Ю., Фейгин В.М. Алгоритм обработки данных наблюдений уходящей коротковолновой радиации с ИСЗ “Метеор – М” № 1 // Современные проблемы дистанционного зондирования Земли из космоса. Т. 9. № 3. С. 83–90. 2012б.
- 10. − Almeida J., Schobesberger S., Kürten A. et al. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere // Nature. V. 502. Iss. 7471. P. 359–363. 2013.
- 11. − Blunden J., Boyer T., (Eds.) State of the Climate in 2021 // Bull. Amer. Meteor. Soc. V. 103(8). S1–S465. 2022. https://doi.org/10.1175/2022BAMSStateoftheClimate.1
- 12. − Goode P.R., Palle E., Shoumko A., Shoumko S., Montanes–Rodriguez P., Koonin S.E. Earth’s albedo 1998–2017 as measured from earthshine // Geophys. Res. Lett. V. 48. e2021GL094888. 2021. https://doi.org/10.1029/2021GL094888
- 13. − Gray L.J., Beer J., Geller M. et al. Solar influences on climate // Rev. Geophys. V. 48. RG4001. 2010. https://doi.org/10.1029/2009RG000282
- 14. − Karlsson K.-G., Anttila K. Trentmann J. et al. CLARA-A2.1: CM SAF cLoud, Albedo and surface RAdiation dataset from AVHRR data – Edition 2.1. 2020. https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/ V002_01
- 15. − Laken B.A., Čalogovič J. Composite analysis with Monte Carlo methods: an example with cosmic rays and clouds // Journal of Space Weather and Space Climate. V. 3. A29. 2013. https://doi.org/10.1051/swsc/2013051
- 16. − Loeb N.G., Thorsen T.J., Norris J.R., Wang H., Su W. Changes in Earth’s energy budget during and after the “pause” in global warming: an observational perspective. 2018. https://doi.org/10.3390/cli6030062
- 17. − Marsh N., Svensmark H. Cosmic rays, clouds, and climate // Space Sci. Rev. V. 94. P. 215–230. 2000.
- 18. − Mironova I.A., Aplin K.L., Arnold F., Bazilevskaya G.A., Harrison R.G., Krivolutsky A.A., Nicoll K.A., Rozanov E.V., Turunen E., Usoskin I.G. Energetic particle influence on the Earth’s atmosphere // Space Sci. Rev. V. 194. P. 1–96. 2015. https://doi.org/10.1007/s11214-015-0185-4
- 19. − Morice C.P., Kennedy J.J., Rayner N.A., Winn J.P., Hogan E., Killick R.E., Dunn R.J.H., Osborn T.J., Jones P.D., Simpson I.R. An updated assessment of near-surface temperature change from 1850: the HadCRUT5 dataset // J. Geophys. Res. 2021. https://doi.org/10.1029/2019JD032361
- 20. − Pudovkin M.I., Veretenenko S.V. Variations of the cosmic rays as one of the possible links between the solar activity and the lower atmosphere // Adv. Space Res. V. 17. P. 161–164. 1996.
- 21. − Smith G.L., Priestley K.J., Loeb N.G., Wielicki B.A., Charlock T.P., Minnis P., Doelling D.R., Rutan D.A. Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future // Adv. Space Res. V. 48. P. 254–263. 2011.
- 22. − Stephens G.L., O’Brien D., Webster P.J., Pilewski P., Kato S., Li J.-L. The albedo of Earth // Rev. Geophys. V. 53. P. 141–163. 2015.