RAS PhysicsГеомагнетизм и аэрономия Geomagnetism and Aeronomy

  • ISSN (Print) 0016-7940
  • ISSN (Online) 3034-5022

Relationships Between Solar Activity Indices in Different Time Intervals

PII
S3034502225030041-1
DOI
10.7868/S3034502225030041
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 3
Pages
335-342
Abstract
The article presents the results of the analysis of long-term changes in the relationship between solar activity indices for 1953-2023. For this purpose, the annual moving averages of the 10, 30, , and indices were used - the solar radio emission fluxes at wavelengths of 10.7 and 30 cm, the ratio of the central part to the flanks in the magnesium emission band of 276-284 nm, the international sunspot number and the ionospheric index, which is determined from ionospheric data as an analogue of the sunspot number. It has been found that the entire measurement period can be divided into the intervals 1953-1980, 1981-2012 and 2013-2023, in which the relationships between the solar activity indices differ distinctly. In the interval 1953-1980, these relationships are stable, i.e. there is practically no linear time trend in the dependence of one solar activity index on another. In the interval 2013-2023, such trends are usually significant. The boundaries of these intervals (1980 and 2013) approximately correspond to the maxima of the first and last solar cycles in the decreasing activity regime, when the large-scale solar magnetic field and the solar cycle height decrease over time. Therefore, the relationships between the solar activity indices, including the relationships between the ionospheric index and solar indices provide additional information on changes in the solar cycle regimes and can serve as one of the characteristics of changes in these regimes.
Keywords
Солнце ионосфера индекс солнечной активности связь изменение со временем
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
77

References

  1. 1. Обридко В.Н. Магнитные поля и индексы активности / Пламенная гелиогеофизика, 2 т. / Ред. Л.М. Зеленый и И.С. Веселовский. М.: Физматлит. T. 1. С. 41-60. 2008.
  2. 2. Обридко В.Н., Шельтинг Б.Д. Некоторые аномалии эволюции глобальных и крупномасштабных магнитных полей на Солнце как предвестники нескольких предстоящих невысоких циклов // Письма в Астрономический журнал. Т. 35. № 4. С. 279-285. 2009.
  3. 3. Balogh A., Hudson H.S., Petrovay K., von Steiger R. Intro-duction to the solar activity cycle: Overview of causes and consequences // Space Sci. Rev. V. 186. № 1-4. P. 1-15. 2014. https://doi.org/10.1007/s11214-014-0125-8
  4. 4. Caruana J. The IPS monthly T index / Proc. Solar-Terrestrial Prediction Workshop. Leura, Australia. October 16-20, 1989. V. 2. Ed. R.J. Thompson. Boulder, CO: Environmental Research Lab. P. 257-263. 1990.
  5. 5. Danilov A.D., Berbeneva N.A. Statistical analysis of the critical frequency foF2 dependence on various solar activity indices // Adv. Space Res. V. 72. № 6. P. 2351-2361. 2023. https://doi.org/10.1016/j.asr.2023.05.012
  6. 6. Danilov A.D., Konstantinova A.V. Trends in foF2 to 2022 and various solar activity indices // Adv. Space Res. V. 71. № 11. P. 4594-4603. 2023. https://doi.org/10.1016/j.asr.2023.01.028
  7. 7. Harvey K.L. The cyclic behavior of solar activity / The Solar Cycle. Proc. National Solar Observatory / Sacramento Peak 12th Summer Workshop / Astr. Soc. P. V. 27. Ed. K.L. Harvey. San Francisco: ASP. P. 335-367. 1992.
  8. 8. Hathaway D.H. The solar cycle // Living Rev. Sol. Phys. V. 12. ID 4. 2015. https://doi.org/10.1007/lrsp-2015-4
  9. 9. Laštovička J., Burešova D. Relationships between foF2 and various solar activity proxies // Space Weather. V. 21. № 4. ID e2022SW003359. 2023. https://doi.org/10.1029/2022SW003359
  10. 10. Laštovička J. Dependence of long-term trends in foF2 at middle latitudes on different solar activity proxies // Adv. Space Res. V. 73. № 1. P. 685-689. 2024. https://doi.org/10.1016/j.asr.2023.09.047
  11. 11. Livingston W., Penn M.J., Svalgaard L. Decreasing sunspot magnetic fields explain unique 10.7 cm radio flux // Astrophys. J. Lett. V. 757. № 1. ID L8. 2012. https://doi.org/10.1088/2041-8205/757/1/L8
  12. 12. Martin S.F. Observations key to understanding solar cycles: a review // Front. Astron. Space Sci. V. 10. ID 1177097. 2024. https://doi.org/10.3389/fspas.2023.1177097
  13. 13. Mursula K., Pevtsov A.A., Asikainen T., Tahtinen I., Yeates A.R. Transition to a weaker Sun: Changes in the solar atmosphere during the decay of the Modern Maximum // Astron. Astrophys. V. 685. ID A170. 2024. https://doi.org/10.1051/0004-6361/202449231
  14. 14. Petrie G.J.D. Global solar photospheric and coronal magnetic field over activity cycles 21-25 // J. Space Weather Space. V. 14. ID 5. 2024. https://doi.org/10.1051/swsc/2024005
  15. 15. Rees M.H. Physics and chemistry of the upper atmosphere. New York: Cambridge Univ. Press, 289 p. 1989.
  16. 16. Svalgaard L., Hansen W.W. Solar activity - past, present, future // J. Space Weather Space. V. 3. ID A24. 2013. https://doi.org/10.1051/swsc/2013046
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library