RAS PhysicsГеомагнетизм и аэрономия Geomagnetism and Aeronomy

  • ISSN (Print) 0016-7940
  • ISSN (Online) 3034-5022

Application of artificial neural networks for reconstruction of vector magnetic field from single-component data

PII
S0016794025010109-1
DOI
10.31857/S0016794025010109
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 1
Pages
118-126
Abstract
In this work the problem of reconstructing the vector anomalous magnetic field from single-component data was solved by means of artificial neural networks. For training an artificial neural network a database of anomalous magnetic field components Bx, By, Bz was created using a set of point magnetic dipoles lying under the field measurement plane. Using a synthetic example, the work of a trained neural network was shown in comparison with a well-known numerical algorithm for restoring a vector field from data of one component. Further, according to the data of the vertical component of the anomalous geomagnetic field the horizontal components of the anomalous geomagnetic field were restored using artificial neural networks in the territory of 58 – 85° E, 52 – 74° N with a grid step of 2 arc minutes.
Keywords
искусственные нейронные сети аномальное магнитное поле векторное магнитное поле компьютерное моделирование
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
29

References

  1. 1. Колесова В.И. Аналитические методы магнитной картографии. Москва: Наука, 1985.
  2. 2. Колесова В.И., Черкаева Е.А. Вычисление компонент векторного аномального геомагнитного поля по модульным данным. Препринт № 46 (735). М.: ИЗМИРАН, 1987.
  3. 3. Яновский Б.М. Земной магнетизм. Ленинград : Изд-во ЛГУ, 591 c. 1978.
  4. 4. Abadi M. et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems //arXiv preprint arXiv:1603.04467. https://doi.org/10.48550/arXiv.1603.04467. 2016.
  5. 5. Alken P., Thébault E., Beggan C.D., et al. International Geomagnetic Reference Field: the thirteenth generation // Earth, Planets and Space. V. 73. № 1. P. 1–25. https://doi.org/10.1186/s40623-020-01288-x. 2021.
  6. 6. Barkhatov N.A., Vorobjev V.G., Revunov S.E., et al. Effect of solar dynamics parameters on the formation of substorm activity // Geomagn. Aeron. V. 57. P. 251–256. https://doi.org/10.1134/S0016793217030021. 2017.
  7. 7. Buchanan A., Finn C.A., Love J.J., et al. Geomagnetic referencing—the real-time compass for directional drillers // Oilfield Review. V. 25. № 3. P. 32−47. 2013.
  8. 8. Coskun U.H., Sel B., Plaster B. Magnetic field mapping of inaccessible regions using physics-informed neural networks //Scientific Reports. V. 12. № 1. P. 12858–12867. https://doi.org/10.1038/s41598-022-15777-4. 2022.
  9. 9. Kaftan İ. Interpretation of magnetic anomalies using a genetic algorithm // Acta Geophysica. V. 65. № 4. P. 627–634. https://doi.org/10.1007/s11600-017-0060-7. 2017.
  10. 10. Kaji C.V., Hoover RC., Ragi S. Underwater Navigation using Geomagnetic Field Variations / 2019 IEEE Intern. Conference on Electro Information Technology (EIT). https://doi.org/10.1109/eit.2019.8834192. 2019.
  11. 11. Kingma D.P., Ba J. Adam: A method for stochastic optimization //arXiv preprint arXiv:1412.6980. 2014.
  12. 12. Krizhevsky A., Sutskever I., Hinton G.E. Imagenet classification with deep convolutional neural networks //Advances in neural information processing systems. V. 25. P. 1097–1105. 2012.
  13. 13. Lourenco J.S., Morrison H.F. Vector magnetic anomalies derived from measurements of a single component of the field // Geophysics. V. 38, № 2. P. 359–368. doi:10.1190/1.1440346. 1973.
  14. 14. Maus S. An ellipsoidal harmonic representation of Earth’s lithospheric magnetic field to degree and order 720, Geochem. Geophys. Geosyst., 11, Q06015, https://doi.org/10.1029/2010GC003026. 2010.
  15. 15. Montesinos F.G., Blanco-Montenegro I., Arnoso J. Three-dimensional inverse modelling of magnetic anomaly sources based on a genetic algorithm // Physics of the Earth and Planetary Interiors. V. 253. P. 74–87. https://doi.org/10.1016/j.pepi.2016.02.004. 2016.
  16. 16. Pollok S., Bjørk R., Jørgensen P.S. Inverse design of magnetic fields using deep learning //IEEE Transactions on Magnetics. V. 57. №. 7. P. 1‒4. https://doi.org/10.1109/TMAG.2021.3082431. 2021.
  17. 17. Pollok S. et al. Magnetic field prediction using generative adversarial networks //Journal of Magnetism and Magnetic Materials. V. 571. P. 170556–170565. https://doi.org/10.1016/j.jmmm.2023.170556. 2023.
  18. 18. Virtanen P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python //Nature methods. V. 17. №. 3. P. 261‒272. https://doi.org/10.1038/s41592-019-0686-2. 2020.
  19. 19. Ying X. An overview of overfitting and its solutions //Journal of physics: Conference series. – IOP Publishing. V. 1168. P. 022022–022029. https://doi.org/10.1088/1742-6596/1168/2/022022. 2019.
  20. 20. The National Centers for Environmental Information. (2018). [Online]. Available: https://www.ngdc.noaa.gov/geomag/geomag.shtml
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library