Предложена аэрономическая и динамическая коррекция медианной глобальной модели полного электронного содержания GTEC для возмущенных условий (Ap ≥ 15 нТл). Глобальная медианная модель GTEC построена для спокойных условий (Ap < 15 нТл) в зависимости от географических координат, мирового времени UT, дня года и уровня солнечной активности – потока солнечного радиоизлучения F10.7. Модель основана на сферическом гармоническом анализе глобальных ионосферных карт GIM-TEC (1996–2019 гг.), предоставленных лабораторией JPL (Jet Propulsion Laboratory, NASA). Предлагаемая глобальная динамическая модель GDMTEC (Global Dynamic Model of TEC) состоит из медианной модели GTEC и ряда динамических и аэрономических поправок к ней, связанных с образованием главного ионосферного провала, аврорального максимума ионизации, а также с изменениями температуры и состава термосферы. Преимущество предлагаемой коррекции медианной модели по сравнению с ассимиляцией текущих наблюдательных данных заключается в независимости прогноза от наличия этих данных в реальном времени. Апробация модели для возмущенных условий показывает улучшение результатов прогноза по сравнению со справочной ионосферной моделью IRI-Plas.
На основе данных медиан электронной концентрации максимума F2-слоя NmF2 пары ионосферных станций Боулдер–Хобарт за 1963–2013 гг. проведен анализ зависимости локального индекса годовой асимметрии R в полдень от солнечной активности, где индекс R – отношение январь/июль суммарной концентрации NmF2 для этой пары станций. Использованы средние за 81 день индексы солнечной активности: Fobs – плотность потока радиоизлучения Солнца на длине волны 10.7 см, измеренная с помощью наземных радиотелескопов, и Fadj – значения Fobs, приведенные к фиксированному расстоянию от Солнца в одну астрономическую единицу. Получено, что уравнения регрессии, отражающие зависимости медиан NmF2 от Fobs, позволяют получить индекс годовой асимметрии R для фиксированного Fobs с учетом замены Fobs на cFobs в этих уравнениях регрессии, где коэффициент c равен 1.03 и 0.97 для января и июля. Вариант c = 1 соответствует пренебрежению годовой асимметрией в индексе Fobs из-за эллиптичности орбиты Земли. Для варианта c = 1 индекс R увеличивается с ростом солнечной активности от 1.2 при низкой до почти 1.4 при высокой активности. Дополнительный учет годовой асимметрии в Fobs приводит к увеличению индекса R примерно на 0.1 почти независимо от уровня солнечной активности. Этот вывод получен, по-видимому, впервые. Индекс Fadj также позволяет получить корректную оценку индекса R, поскольку годовая асимметрия в потоке солнечного излучения косвенно учтена через экспериментальные значения NmF2.
На основе часовых данных ст. Алма-Ата (43.2° N, 104° E) за 1958–1988 гг. проведен анализ свойств изменчивости концентрации максимума F2-слоя Nm при разных уровнях солнечной и геомагнитной активности. Для характеристик этой изменчивости использованы стандартное отклонение σ(x) флуктуаций Nm относительно спокойного уровня (x = (Nm/Nm0 – 1) × 100, %) и средний сдвиг этих флуктуаций xave. На этом пути создана эмпирическая модель концентрации максимума F2-слоя Nm0 для низкой геомагнитной активности. Получено, что изменчивость Nm слабо зависит от уровня солнечной активности. Зависимость изменчивости Nm от геомагнитной активности является одной из основных, наряду с зависимостями этой изменчивости от времени суток и сезона. В целом дисперсия σ2(x) для спокойных условий меньше, чем для периодов высокой геомагнитной активности. Однако в периоды высокой геомагнитной активности дальнейший рост геомагнитной активности не приводит к увеличению дисперсии σ2(x). Насыщение в увеличении дисперсии σ2(x) при продолжающемся увеличении геомагнитной активности и отсутствие этого насыщения для среднего сдвига xave, по-видимому, является устойчивым свойством изменчивости ионосферы средних широт в периоды геомагнитных бурь. Этот вывод получен на основе дополнительного анализа изменчивости ионосферы по данным станций Иркутск и Ямагава (Yamagawa), которые расположены примерно на 10 градусов севернее и южнее ст. Алма-Ата соответственно.
Индекс P = (F1 + F81)/2 является оптимальным индексом солнечной активности для критической частоты E-слоя foE, где F1 и F81 – поток радиоизлучения Солнца на длине волны 10.7 см в данный день и среднее за 81 день значение этого потока, центрированное на данный день. Поэтому для вычисления F81 в данный день необходимо знание F1 не только в этот и предыдущие дни, но и на 40 дней вперед. Вместо индекса F81 в задачах краткосрочного прогноза этого индекса может быть использован F(27, 81) – средневзвешенный индекс солнечной активности с характерным временем 27 дней за данный и предыдущие 80 дней. Поэтому для вычисления индекса F(27, 81) достаточно знания F1 в данный день и предыдущие дни. В данной работе представлены первые оценки эффективности такой замены для foE. Для этого проанализированы изменения точности расчетов foE при замене индекса P на P * = (F1 + F(27, 81))/2 в эмпирических моделях, построенных по данным foE ионосферных станций в дневные часы на средних и субавроральных широтах за 1959–1995 гг. Получено, что индексы P и P * практически эквиваленты для вычисления foE по построенным эмпирическим моделям на этих широтах: разница коэффициентов вариации для foE не превышает 0.3% в каждый из сезонов на разных фазах солнечных циклов. Следовательно, индекс P * может быть рекомендован для использования в задачах краткосрочного прогноза foE, поскольку он основан на индексах F1 за данный и предыдущие дни в отличие от индекса P, для вычисления которого необходим прогноз F1 на 40 дней вперед.
На основе глобальной эмпирической модели медианы критической частоты F2-слоя (SDMF2) выполнен анализ свойств суточных вариаций годовой асимметрии в концентрации максимума F2-слоя NmF2 при различных значениях индекса солнечной активности F. В качестве параметра этой асимметрии использован индекс AI, который характеризует относительную разницу в NmF2, усредненной по всем долготам и широтам, между январем и июлем в данное местное время. Получено, что в суточных вариациях индекса AI преобладает полусуточная мода с максимумами в дневные и ночные часы. Дневной максимум индекса AI почти не зависит от уровня солнечной активности. Ночной максимум AI уменьшается с ростом солнечной активности. Для низкой солнечной активности дневной и ночной максимумы AI почти совпадают по амплитуде, когда AI = 16—17%. Разница в потоке солнечного радиоизлучения между январем и июлем из-за эллиптичности орбиты Земли относительно Солнца вносит заметный вклад в индекс AI во все часы суток. В среднем он составляет 3—4% и может достигать 5% при низкой солнечной активности в ночные часы. Разница в индексе AI для низкой и высокой активности по Международной справочной модели ионосферы IRI (c коэффициентами URSI и тем более CCIR) завышена относительно модели SDMF2 почти во все часы суток, по-видимому, из-за ограниченного числа экспериментальных данных при получении коэффициентов CCIR и URSI, особенно над океанами.
На основе данных среднеширотных ионосферных станций на близких исправленных геомагнитных широтах проведен анализ свойств изменчивости концентрации максимума слоя F2 (NmF2) на разных долготах при повышенной (48 > ap(t) > 27) и высокой (ap(t) > 48) геомагнитной активности, где ap(t) – средневзвешенный ap-индекс этой активности. В качестве характеристик этой изменчивости использованы стандартное отклонение s флуктуаций Nm относительно спокойного уровня и средний сдвиг этих флуктуаций xave. Получено, что на всех анализируемых станциях дисперсия s2 для повышенной геомагнитной активности больше, чем для спокойных условий, но почти не отличается от s2 для высокой геомагнитной активности. Для всех анализируемых случаев средний сдвиг xave < 0, и для высокой геомагнитной активности модуль xave больше, чем для повышенной геомагнитной активности. Разница в значениях xave между анализируемыми станциями достаточно большая. Одна из причин этой разницы может быть связана с зависимостью xave от геомагнитных широт. Для выбора этих широт использованы аппроксимации геомагнитного поля наклонным диполем (TD), эксцентричным диполем (ED) или с помощью исправленных геомагнитных (CGM) координат. Получено, что зависимость xave от ED-широты точнее зависимости xave от TD-широты и, тем более, зависимости xave от CGM-широты. Следовательно, ED-широты, а не CGM-широты, являются оптимальными для учета эффектов бурь в концентрации максимума слоя F2 на средних широтах. Этот вывод получен, по-видимому, впервые.
На основе данных семнадцати среднеширотных ионосферных станций за 1958–1988 гг. проведен анализ сезонных особенностей концентрации максимума слоя F2 (NmF2) на разных долготах при повышенной (48 > ap(τ) > 27) геомагнитной активности, где ap(τ) – средневзвешенный (с характерным временем 14 ч) ap-индекс этой активности. В качестве характеристик изменчивости использованы стандартное отклонение σ флуктуаций NmF2 относительно спокойного уровня и средний сдвиг этих флуктуаций xave в дневные (11–13 LT) и ночные (23–01 LT) часы. Получено, что на всех анализируемых станциях дисперсия σ2 для повышенной геомагнитной активности больше, чем для спокойных условий, и, при прочих равных условиях, она максимальна зимой в ночные часы. Для повышенной геомагнитной активности во все сезоны разница в значениях xave между анализируемыми станциями достаточно большая. Одна из причин этой разницы связана с зависимостью xave от геомагнитных широт. Для выбора этих широт использованы аппроксимации геомагнитного поля наклонным диполем (TD), эксцентричным диполем (ED) или с помощью исправленных геомагнитных (CGM) координат. Получено, что зависимость xave от ED-широты точнее зависимости xave от TD-широты или CGM-широты во все сезоны в ночные часы и в равноденствия и зимой в дневные часы. Летом в дневные часы зависимости xave от ED-широты и CGM-широты сопоставимы по точности, и они точнее зависимости xave от TD-широты. Следовательно, ED-широты являются оптимальными для учета эффектов бурь в концентрации максимума слоя F2 на средних широтах во все сезоны. Этот вывод получен, по-видимому, впервые.
На основе данных зондовых измерений электронной концентрации в ионосфере на спутнике CHAMP с июля 2000 по декабрь 2007 г. проведен анализ возможности использования координат эксцентричного диполя (ED) в модели для инвариантной широты минимума главного ионосферного провала, Φ. Установлено, что модель Φ, построенная по этим данным в координатах исправленной геомагнитной (CGM) широты, может без изменений использоваться в координатах ED, поскольку стандартное отклонение модели меньше разницы в значениях Φ для этих двух вариантов задания геомагнитных широт. Разница в значениях Φ для этих двух вариантов минимальна для Южного полушария и может быть заметна для Северного полушария, особенно на долготах Восточно-Сибирской магнитной аномалии. Зависимость Φ от местного времени и геомагнитной активности является основной. Зависимость Φ от географической долготы является относительно слабой, поэтому разница в значениях Φ между координатами CGM и ED даже на долготах Восточно-Сибирской магнитной аномалии меньше стандартного отклонения модели.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации