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В данной работе с помощью искусственных нейронных сетей была решена задача о восстанов-
лении векторного аномального магнитного поля по однокомпонентным данным. Для обучения 
искусственной нейронной сети была создана база данных компонент аномального магнитного 
поля Bx, By, Bz  с помощью набора точечных магнитных диполей, залегающих под плоскостью 
измерения поля. На синтетическом примере была показана работа обученной нейронной сети 
в сравнении с известным численным алгоритмом восстановления векторного поля по данным од-
ной компоненты. Далее, по данным вертикальной компоненты аномального геомагнитного поля 
с помощью искусственных нейронных сетей были восстановлены горизонтальные компоненты 
аномального геомагнитного поля на территории 58–85° E, 52°–74° N с шагом сетки 2 угловых ми-
нуты.
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1. ВВЕДЕНИЕ
Модели векторного аномального магнитного 

поля широко используются для задач геофизики, 
навигации и направленного бурения [Buchanan 
et al., 2013; Kaji et al., 2019]. Однако, количество 
модульных данных аномального поля превышает 
число векторных измерений. Поэтому, чтобы по-
лучить высокоточную модель векторного магнит-
ного поля, с помощью специальных методов по 
данным известного однокомпонентного ано-
мального магнитного поля рассчитывают вектор-
ное аномальное магнитное поле.

Примерами таких методов являются метод 
магнитного потенциала [Lourenco and Morrison, 
1973; Колесова и Черкаева, 1987] и метод магнит-
ных диполей [Montesinos et al., 2016; Kaftan, 
2017]. В методе магнитного потенциала компо-
ненты поля описываются двойными рядами Фу-
рье, коэффициенты которых связаны через по-
тенциал аномального магнитного поля. Однако 

данный метод требует, чтобы магнитная анома-
лия полностью находилась в  области измере-
ний  [Lourenco and Morrison, 1973; Колесова 
и Черкаева, 1987]. С помощью метода диполей 
искомое векторное поле рассчитывается, опира-
ясь на известную компоненту аномального поля, 
с помощью набора фиктивных точечных дипо-
лей, положения которых подбираются методом 
проб и ошибок под плоскостью сканирования 
аномального поля. Однако время работы метода 
диполей быстро возрастает с увеличением числа 
диполей и точек измерения аномального магнит-
ного поля.

Для быстрой обработки большого объема 
цифровых изображений эффективно примене-
ние искусственных нейронных сетей. Искус-
ственные нейронные сети широко используются 
для приложений в компьютерном зрении и клас-
сификации изображений [Krizhevsky et al., 2012]. 
Нейронные сети, обученные на данных о физи-
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ческих процессах, применялись для моделирова-
ния магнитных полей, а также для интерполяции 
и продления магнитных полей, измеренных на 
редкой сетке [Coskun et al., 2022; Pollok et al., 2021; 
Pollok et al., 2023]. В некоторых случаях обучен-
ная нейронная сеть показывает более высокую 
точность в сравнении с традиционными числен-
ными алгоритмами [Coskun et al., 2022; Pollok 
et al., 2021].

В данной работе предложен новый метод вос-
становления векторного магнитного поля с по-
мощью искусственных нейронных сетей. Ней-
ронная сеть принимает на вход данные верти-
кальной Bz -компоненты аномального поля 
размерностью 40 × 40 пикселей, а затем восста-
навливает компоненты в плоскости Bx и By. Для 
обучения разработанной нейронной сети была 
создана база данных, содержащая 50000 случай-
ных аномальных магнитных полей, которые были 
получены с помощью суммарного поля точечных 
магнитных диполей. Было проведено сравнение 
разработанной нейронной сети с известным чис-
ленным методом восстановления векторного 
поля [Lourenco and Morrison, 1973; Колесова 
и Черкаева, 1987]. Работа нейронной сети также 
была проверена с помощью данных вертикальной 
компоненты аномального поля, полученного 

с помощью моделей IGRF-13 [Alken et al., 2021] 
и EMM2017 [Maus, 2010; The National Centers for 
Environmental Information, 2018] на территории 
58–85° E, 52–74° N с шагом сетки 2 угловых ми-
нуты.

2. ОПИСАНИЕ МЕТОДА

2.1. Архитектура нейронной сети
Схема разработанной искусственной нейрон-

ной сети показана на рис. 1. Известное распреде-
ление вертикальной компоненты аномального 
поля Bz размерностью 40 × 40 пикселей поступа-
ет на вход нейронной сети. Для предварительно-
го грубого расчета используется плотная нейрон-
ная сеть, содержащая входной слой, внутренний 
слой и выходной слой размерностью 40 × 40 ней-
ронов. Далее результаты грубого расчета компо-
нент аномального поля поступают на вход уточ-
няющей нейронной сети. Уточнение происходит 
с помощью сверточной нейронной сети с вход-
ным слоем, выходным слоем и двумя внутренни-
ми слоями, содержащими 40 × 40 нейронов. 
В разработанной модели использовалась линей-
ная функция активации нейронов. 
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Рис. 1. Схематичное изображение архитектуры искусственной нейронной сети для восстановления Bx- и By-компо-
нент аномального магнитного поля по известной вертикальной Bz-компоненте.



120 Рытов, Петров

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ       том 65       № 1       2025

Нейронная сеть была реализована с помощью 
библиотеки tensorflow [Abadi et al., 2016]. Выбор 
библиотеки tensorflow обоснован высокой произ-
водительностью, гибкостью и удобством разра-
ботки нейронной сети. Для обучения нейронной 
сети использовался алгоритм стохастического 
градиентного спуска Adam [Kingma et al., 2014].

Для обучения нейронной сети и дальнейшей 
оценки точности восстановления магнитного 
поля необходимо задать функцию невязки. Су-
ществует множество известных функций невяз-
ки, некоторые из которых реализованы в пакете 
tensorflow, например, средний квадрат отклоне-
ния, средний модуль отклонения и т.д. Существу-
ют и  более совершенные функции, например, 
РЕ-функция [Barkhatov et al., 2017]. Выбор кон-
кретной функции невязки для обучения нейрон-
ной сети зависит от типа входных данных и может 
подбираться экспериментально. В данной работе 
для простоты была выбрана функция среднеква-
дратичной ошибки вида
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где Bi − известное поле в точке i, Bi
R  − восстанов-

ленное поле в точке i, B2  − средний квадрат 
известного аномального поля, N – общее число 
точек измерения. 

Обучающая база данных состоит из 50000 слу-
чайных компонент аномального магнитного поля 
Bx, By, Bz, из неё 45000 компонент использовались 
для обучения искусственной нейронной сети, 
5000 компонент использовались для валидации 
процесса обучения нейронной сети. В процессе 
обучения невязка достигла значений L < 4∙10-3.

2.2. Прямое моделирование аномального поля
Для моделирования аномального магнитного 

поля использовались точечные диполи, так как 
магнитное поле намагниченного тела на рассто-
яниях, превышающих его размеры, эквивалентно 
полю точечного диполя. Поле точечного магнит-
ного диполя определяется известной формулой 
[Яновский, 1978]
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где r  – вектор из точки нахождения диполя в точ-
ку измерения, m − магнитный момент диполя 
в  декартовой системе координат. Аномальное 
магнитное поле моделируется с помощью случай-

ного распределения 1–400 точечных магнитных 
диполей. Компоненты аномального магнитного 
поля затем вычисляются в плоскости на некото-
рой высоте над точечными диполями и заносятся 
в базу данных. Численные значения компонент 
аномального поля нормируются таким образом, 
чтобы они лежали в диапазоне [-1, 1].

2.3. Обучение нейронной сети
Обучение разработанной нейронной сети про-

водилось на персональном компьютере с процес-
сором Intel Core i7-9700 и видеокартой NVIDIA 
GeForce GTX 950. Для того чтобы 2 Gb свободной 
памяти видеокарты были задействованы, вход-
ные данные для обучения, общим размером чуть 
более 2 Gb, разбивались на равные части по 1 Gb. 
Далее обучение проводилось на каждой серии 
данных до момента, когда невязка на валидиру-
ющей выборке станет больше невязки обучаю-
щей выборки. Пример графика динамики функ-
ции невязки в процессе обучения в логарифми-
ческом масштабе показан на рис. 2.

На рис. 2 показан процесс уменьшения зна-
чения функции невязки для обучающих данных 
и  для валидирующих данных. Для того чтобы 
избежать переобучения нейронной сети, про-
цесс обучения останавливался, если невязка ва-
лидирующей выборки начинала возрастать от-
носительно невязки обучающей выборки [Ying, 
2019]. Данный момент показан на рис. 2 стре-
лочкой, ему соответствует примерно 80 номер 
эпохи.
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Рис. 2. Значение функции невязки для обучающей 
серии данных и валидирующей серии данных как 
функция номера эпохи в процессе обучения искус-
ственной нейронной сети
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3. СИНТЕТИЧЕСКИЙ ПРИМЕР
Обученная нейронная сеть была проверена 

с помощью тестовых аномальных магнитных по-
лей, которые не входили в  общую базу данных 
в процессе обучения. На рис. 3 для конкретного 
примера показан результат работы обученной ней-
ронной сети в сравнении с численным алгоритмом 
восстановления горизонтальных компонент ано-
мального магнитного поля, который подробно 
описан в работе [Lourenco and Morrison, 1973].

На рис. 3а, 3б показаны результаты восстанов-
ления горизонтальных компонент Bx и By ано-
мального поля по данным вертикальной Bz -ком-
поненты с помощью численного алгоритма. Ри-
сунки 3в, 3г демонстрируют результаты работы 
обученной нейронной сети для тех же входных 
данных. Серии на рис. 3 показывают исходные 
компоненты Bx и By, восстановленные компонен-
ты Bx

восст. и By
восст., а также разность между исход-

ными и восстановленными компонентами маг-
нитного поля, полученными с помощью числен-
ного алгоритма и искусственной нейронной сети.

Рисунок 3 показывает, что в  случае работы 
численного алгоритма невязка, рассчитанная по 
формуле (1), принимает значения L = 0.1067 
и L = 0.1606 для компонент Bx и By соответствен-
но. Для результатов работы нейронной сети 
ошибка принимает значения L = 0.0031 
и L = 0.0018 для компонент Bx и By соответствен-
но. Рисунок 3а, 3б показывают, что в случае ра-
боты численного алгоритма основной вклад 

в ошибку вносят краевые эффекты, которые от-
сутствуют в результатах работы нейронной сети, 
как показывают рис. 3в, 3г. Краевые эффекты 
возникают, когда магнитная аномалия не входит 
целиком в  изучаемую область [Lourenco and 
Morrison, 1973; Колесова и Черкаева, 1987].

Чтобы снизить общую невязку, краевые 10 px 
каждого изображения удаляются, а невязка вы-
числяется в области 20 × 20 px, показанной на 
рис. 3. В данном случае для численного алгорит-
ма невязка принимает значения L = 0.0082 
и L = 0.0112 для компонент Bx и By соответствен-
но, а в случае применения обученной нейронной 
сети невязка L = 4.2∙10-4 и L = 2.7∙10-4 для компо-
нент Bx и By соответственно.

Далее было проведено сравнение средней не-
вязки результатов работы численного алгоритма 
и обученной нейронной сети на 1000 случайных 
распределений аномального магнитного поля, ко-
торые не входили в базу данных при обучении ней-
ронной сети. В выборку включались также случаи, 
когда магнитная аномалия не входит целиком 
в рассматриваемую область. Невязка рассчитыва-
лась как для целого изображения 40 × 40 px, так 
и  для изображений без краевых пикселей, 
20 × 20 px. Результаты проведенного сравнения 
показаны в табл. 1.

Результаты, приведенные в табл. 1, показыва-
ют, что искусственная нейронная сеть в среднем 
имеет лучшую точность в смысле функции невяз-
ки (1) в сравнении с известным численным алго-
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Рис. 3. Результаты восстановления горизонтальных компонент Bx и By (а–б) с помощью численного алгоритма и (в–г) 
с помощью обученной искусственной нейронной сети.
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Для моделирования белого шума случайное 
число в диапазоне [-0.5, 0.5] было добавлено к зна-
чению каждого пикселя вертикальной компонен-
ты Bz, как показывает рис. 4а. Здесь также показа-
ны истинные компоненты в плоскости, Bx и By. По 
заданной зашумленной компоненте Bz были восста-
новлены компоненты в плоскости Bx и By с по-
мощью искусственной нейронной сети, рис. 4б, 
и с помощью численного алгоритма, рис. 4в.

Разница между истинными компонентами 
и восстановленными показана на рис. 4б для ис-
кусственной нейронной сети и на рис. 4в для чис-

ритмом. Если также учесть влияние краевых эф-
фектов и  отбросить по 10 пикселей с  каждого 
края изображения, то точность восстановления 
векторного поля возрастает существенно для обо-
их методов, но и в этом случае нейронная сеть 
показывает несколько лучшие результаты.

3.1. Влияние шума
Далее работа искусственной нейронной сети 

была проверена на зашумленных данных. Резуль-
таты проверки показаны на рис. 4.
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Рис. 4. Результаты восстановления горизонтальных компонент Bx и By (а) по зашумленным данным компоненты Bz, (б) 
с помощью обученной искусственной нейронной сети и (в) с помощью численного алгоритма.

Таблица 1. Средняя невязка для восстановленных компонент аномального магнитного поля в плоскости с по-
мощью численного алгоритма и обученной искусственной нейронной сети

Размер
изображения

на выходе
Bx (числ. алгоритм) By (числ. алгоритм) Bx (нейрон. сеть) By (нейрон. сеть)

40 × 40 px L = 0.1068 L = 0.1058 L = 0.0271 L = 0.0269

20 × 20 px L = 0.0125 L = 0.0125 L = 0.0069 L = 0.0071
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ленного алгоритма. В случае нейронной сети не-
вязка принимает значения L = 0.0578 для Bx-ком-
поненты и L = 0.0464 для By-компоненты. Для 
численного алгоритма невязка принимает значе-
ния L = 0.4613 для Bx-компоненты и L = 0.6579 
для By-компоненты.

Далее, как и в предыдущей секции, было прове-
дено сравнение средней невязки результатов рабо-
ты численного алгоритма и обученной нейронной 
сети на 1000 случайных зашумленных распределе-
ний вертикальной компоненты аномального маг-
нитного поля. Невязка так же рассчитывалась как 
для целого изображения 40× 40  px, так и для изо-
бражений без краевых пикселей, 20 × 20 px. Резуль-
таты такого сравнения показаны в табл. 2.

Результаты, приведенные в табл. 2, показы-
вают, что искусственная нейронная сеть в сред-
нем показывает лучшую устойчивость к шумам 
во входных данных. Так, в случае численного 
алгоритма, средняя невязка для Bx- и By-компо-
нент аномального поля составляет L = 0.7493 
и L = 0.8122 соответственно. Для искусственной 
нейронной сети, средняя невязка для Bx- и By-ком-
понент аномального поля составляет L = 0.0733 
и L = 0.0680 соответственно. Если же отбросить 
краевые пиксели, то для численного алгорит-
ма  невязка принимает значения L = 0.1496 
и L = 0.1895 для компонент Bx и By соответственно, 
а для искусственной нейронной сети невязка при-
нимает значения L = 0.0122 и L = 0.0126 для ком-
понент Bx и By соответственно.

4. РАССЧЕТ КОМПОНЕНТ АНОМАЛЬНОГО 
ГЕОМАГНИТНОГО ПОЛЯ ПО ДАННЫМ 

ВЕРТИКАЛЬНОЙ КОМПОНЕНТЫ
Искусственная нейронная сеть была протести-

рована на большом объеме данных аномального 
геомагнитного поля. С помощью моделей IGRF-13 
и EMM2017 на высоте 4 км были получены дан-
ные вертикальной компоненты аномального 
поля над областью 58–85° E, 52–74° N с шагом 
сетки 2 угловых минуты, как показано на рис. 5. 

Данные главного геомагнитного поля, созда-
ваемого токами в ядре Земли, были получены из 
модели IGRF-13. Данные полного геомагнитно-
го поля были получены из модели EMM2017. Мо-
дель EMM2017 позволяет получить с точностью 
до 51 км как главное магнитное поле, так и поле 
магнитных аномалий, которые создаются поро-
дами в  земной коре [The National Centers for 
Environmental Information, 2018]. Для получения 
именно аномального магнитного поля, рассчи-
тывалась разность между данными модели пол-
ного поля EMM2017 и главного поля IGRF-13. 
Расчет проводился с использованием следующих 
параметров: 2020 год, высота 4 км над уровнем 
моря, долгота 58–85° E с шагом 0.03 градуса, ши-
рота 52–74° N с шагом 0.03 градуса. Результаты 
восстановления компонент аномального магнит-
ного поля в плоскости показаны на рис. 6.

Аномальное поле на географической сетке ко-
ординат было преобразовано в  километровую 
равномерную сетку с расстоянием между сосед-
ними точками в 2 км, всего 1386 × 1286 точек. Для 
обработки изображения с помощью искусствен-
ной нейронной сети полученная карта вертикаль-
ной компоненты разбивалась случайным образом 
на 50000 пересекающихся участков с размерами 
40 × 40 пикселей.

Затем каждый участок обрабатывался с помо-
щью нейронной сети, а для уменьшения влияния 
краевых эффектов 10 краевых пикселей каждого 
изображения удалялись. Наконец, из маленьких 
участков 20 × 20 пикселей, которые содержат дан-
ные о восстановленных компонентах Bx и By ано-
мального магнитного поля, формировались кар-
ты аномального магнитного поля исходного 
размера.

Расчет проводился на персональном компью-
тере, время обработки 50000 изображений 
40 × 40 пикселей с помощью искусственной ней-
ронной сети не превышает 1 мин при выполне-
нии расчета на CPU. Преобразования карт из 
географических координат в километровые и об-
ратно проводились с помощью алгоритмов ин-

Таблица 2. Средняя невязка для восстановленных компонент аномального магнитного поля в плоскости по 
зашумленным данным с помощью численного алгоритма и обученной искусственной нейронной сети

Размер
изображения

на выходе
Bx (числ. алгоритм) By (числ. алгоритм) Bx (нейрон. сеть) By (нейрон. сеть)

40 × 40 px L = 0.7493 L = 0.8122 L = 0.0733 L = 0.0680

20 × 20 px L = 0.1496 L = 0.1895 L = 0.0122 L = 0.0126
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терполяции, реализованных в открытой библио-
теке scipy [Virtanen et. al., 2020]. 

Серии на рис. 6а, 6б показывают истинные 
компоненты поля Bx и By, полученные из модели 
EMM, восстановленные компоненты Bx

восст. 
и  By

восст с  помощью искусственной нейронной 
сети, а также разницу между истинными и вос-
становленными компонентами аномального маг-
нитного поля. Так, для компоненты Bx функция 
невязки принимает значение L = 0.0931, для ком-
поненты By функция невязки принимает значе-
ние L = 0.0252. 

В области наиболее высокой интенсивности 
магнитных аномалий, Bx  = 1642 нТл, By  = 
=  1853  нТл, погрешность принимает значения 
170 нТл и 98 нТл соответственно. В области высо-
ких широт погрешность для компоненты Bx наи-
более велика, как показывает рис. 6а. Это может 
быть связано с большой протяженностью самих 
аномалий в данной области, около 400 px как по-
казывает рис. 5б, в сравнении с протяженностью 
входного изображения нейронной сети, 40 px.

5. ЗАКЛЮЧЕНИЕ
В данной работе была разработана модель ис-

кусственной нейронной сети для восстановления 
векторного аномального магнитного поля по дан-
ным вертикальной компоненты поля. Нейронная 
сеть содержит в себе плотный входной слой для 
предварительного грубого расчета, результаты 
которого далее уточняются с помощью сверточ-
ной нейронной сети. Разработанная нейронная 
сеть была обучена на данных, созданных с помо-
щью случайного распределения фиктивных то-
чечных магнитных диполей, с помощью которых 
моделировалось аномальное магнитное поле над 
поверхностью земли.

Нейронная сеть показала в среднем лучшие 
результаты при сравнении с известной численной 
схемой восстановления компонент магнитного 
поля в плоскости. Обученная нейронная сеть вос-
станавливает компоненты поля с  меньшими 
краевыми ошибками для случаев, когда магнит-
ная аномалия не входит целиком в искомую об-
ласть. Также нейронная сеть показала устойчи-
вость к шуму во входных данных.

Результаты восстановления векторного поля 
на основе данных моделей IGRF и EMM показа-
ли высокую производительность работы нейрон-
ной сети с большим объемом входных данных. На 
данный момент ведется работа по дальнейшему 
тестированию и совершенствованию модели ней-
ронной сети.
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In this work the problem of reconstructing the vector anomalous magnetic field from single-component 
data was solved by means of artificial neural networks. For training an artificial neural network a database 
of anomalous magnetic field components Bx, By, Bz  was created using a set of point magnetic dipoles lying 
under the field measurement plane. Using a synthetic example, the work of a trained neural network was 
shown in comparison with a well-known numerical algorithm for restoring a vector field from data of one 
component. Further, according to the data of the vertical component of the anomalous geomagnetic field 
the horizontal components of the anomalous geomagnetic field were restored using artificial neural networks 
in the territory of 58 – 85° E, 52 – 74° N with a grid step of 2 arc minutes.
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