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Проведен анализ ионосферных возмущений, сопровождавших умеренную магнитную бурю 14–20 ян-
варя 2022 г. Работа основана на данных вертикального и наклонного зондирования ионосферы, по-
лученных в Северо-Восточном регионе России, дополненных наблюдениями КВ-радаров и маг-
нитных обсерваторий. Выявлено, что амплитуды положительных и отрицательных ионосферных 
возмущений, сопровождавших данную бурю, сравнимы с возмущениями, которые наблюдались 
в другие дни января во время слабых магнитных бурь и возмущений. Специфическими особенно-
стями возмущений, наблюдавшимися только в ходе исследуемой бури, являются: (1) полуночно-
утреннее увеличение максимальной наблюдаемой частоты односкачкового мода распространения 
КВ-радиоволн на трассах Норильск–Торы и Магадан–Торы 14 января; (2) ночные усиления флук-
туаций критической частоты F2-слоя в Иркутске и максимальной наблюдаемой частоты односкач-
кового мода на трассе Магадан–Торы 15 января; (3) утренне-полуденные Es-слои с предельными 
частотами, достигавшими 7 МГц, наблюдавшиеся на средних широтах в конце первого и начале 
второго дня восстановительной фазы бури.  
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1. ВВЕДЕНИЕ
Исследования влияния солнечной и  геомаг-

нитной активности на условия распространения 
радиоволн, начатые в конце 20-х годов прошлого 
века [Pickard, 1927; Anderson, 1928], позволили 
установить тесную связь между геомагнитными 
возмущениями и  значительными изменениями 
структуры ионосферы. По результатам этих иссле-
дований был введен термин “ионосферная буря”, 
под которым понимают совокупность ионосфер-
ных возмущений, сопровождающих геомагнитные 
бури. В настоящее время исследование ионосфер-
ных бурь развивается очень интенсивно как по 
наблюдательным, так и по теоретическим направ-
лениям. Интерес к данному явлению обусловлен 

тем, что ионосферные возмущения часто нару-
шают работу систем ионосферной радиосвязи, 
вызывая помехи, а в экстремальных случаях от-
сутствие прохождения радиоволн между прие-
мо-передающими устройствами, а также энерге-
тических систем, приводя к частичному или пол-
ному отключению электроэнергии, сбоям 
в  работе железнодорожной автоматики и  т.д. 
[Goodman et al., 2006; Кузнецов, 2014; Пилипен-
ко, 2021]. 

Для изучения пространственно-временной 
динамики ионосферной бури принято использо-
вать разность между текущими и фоновыми зна-
чениями критической частоты F2- слоя ионосфе-
ры (foF2) или определяемой по ней максималь-
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ной электронной концентрации ионосферы 
NmF2 = 1.24×104 (foF2)2, а также между текущими 
и фоновыми значениями полного электронного 
содержания (ПЭС). По знаку указанной разности 
ионосферные возмущения разделяют на положи-
тельные и отрицательные, считающиеся основ-
ными элементами ионосферной бури. В качестве 
фоновых обычно используют средние значения 
foF2/ПЭС, измеренные в ближайшие к началу 
бури магнитоспокойные дни (q-дни), или их ме-
сячные медианные значения [Данилов, 2013; 
Mikhailov et al., 2004]. Однако значительные из-
менения ионосферных параметров, сравнимые 
с изменениями, происходящими во время бурь, 
наблюдаются даже в q-дни, что требует проверки 
правомерности использования этих дней для 
определения фона в  каждом конкретном слу-
чае  [Perrone et al., 2020]. Второй способ более 
приемлем тогда, когда значения foF2/ПЭС, изме-
ренные в магнитоспокойные дни, значительно 
отличаются от их месячных медианных величин. 
Кроме положительных и отрицательных возму-
щений различной амплитуды и  длительности, 
ионосферная буря включает в себя усиленное об-
разование спорадических и диффузных ионос-
ферных слоев. 

Пространственно-временные масштабы и ин-
тенсивность ионосферных возмущений, также 
как и уровень геомагнитной активности, увели-
чиваются с ростом корпускулярной и электро-
магнитной энергии, поступающей из межпланет-
ной среды первоначально в  высокоширотную 
часть магнитосферно-ионосферной системы, 
а затем в другие области внешних геосфер [Prölss, 
2006]. Наиболее сильные магнитосферно-ионо
сферные возмущения приходятся на годы макси-
мума солнечной активности. 

Обобщенная пространственно-временная 
картина развития ионосферной бури основана, 
главным образом, на данных, полученных во вре-
мя изолированных сильных и умеренных магнит-
ных бурь, имеющих явно выраженные главную, 
восстановительную, а в некоторых случаях, на-
чальную фазу [Prölss, 1997; Fuller-Rowell et al., 
1997; Buonsanto, 1999; Mendillo, 2006; Данилов, 
2013]. Установлено, что проявления ионосфер-
ной бури, регистрируемые конкретным ионозон-
дом, зависят не только от межпланетных, магни-
тосферных и термосферных процессов, но также 
и от местоположения наблюдательного пункта 
и его местного времени [Жеребцов и Пирог, 2008; 
Kurkin et al., 2008].

Гораздо меньше информации собрано к на-
стоящему времени об ионосферных возмущени-
ях, сопровождающих слабые магнитные бури, 

которые на средних широтах могут быть сопоста-
вимы с изменениями во время сильных магнит-
ных бурь [Buresova et al., 2014]. Уменьшение мак-
симальных наблюдаемых частот односкачкового 
мода распространения КВ-радиоволн (МНЧ1F2) 
во время слабых магнитных бурь может состав-
лять 25–50% [Kurkin et al., 2022; Куркин и др., 
2022]. В работе [Ratovsky et al., 2022] показано, что 
около половины из 25 наблюдавшихся в Иркутске 
в 2003–2016 гг. экстремальных повышений мак-
симальной электронной концентрации в F2-слое 
ионосферы, при которых нормированные от-
клонения NmF2 от месячных медианных значе-
ний были больше 150%, наблюдалось во время 
слабых геомагнитных возмущений с минимумом 
Dst > – 30 нТл. Согласно критерию, указанному 
в работе [Gonzalez et al., 1994], возмущения с ин-
дексом Dst > –30 нТл не являются геомагнитными 
бурями.

Попытка статистического исследования реак-
ции ионосферы на “более слабую” (“weaker”) ге-
омагнитную активность предпринята в публика-
ции [Chen et al., 2022]. Для отбора “weaker” собы-
тий авторы использовали критерий Ap < 60. 
В результате применения этого критерия в анали-
зируемую в работе [Chen et al., 2022] выборку во-
шли сильные и умеренные магнитные бури, что 
ставит под сомнение правомерность сделанных 
в этой работе выводов о тенденциях изменения 
ионосферного отклика на слабые магнитные воз-
мущения. Еще одним существенным недостатком 
работы [Chen et al., 2022], ставящим под сомнение 
ее выводы, является неоднородность эксперимен-
тальных данных, на которых она основана. 

В данной работе продолжены исследования от-
клика ионосферы на слабые магнитные бури, на-
чатые в работе [Kurkin et al., 2022; Куркин и др., 
2022], где показано, что отклик ионосферы на воз-
действие высокоскоростного потока солнечного 
ветра, вызывающего бурю, зависит как от геоэф-
фективных параметров потока, так и от продол-
жительности его воздействия на магнитосферно-
ионосферную систему и ее исходного состояния. 

2. ОБЪЕКТ И ЦЕЛЬ ИССЛЕДОВАНИЯ
Для исследования выбраны ионосферные дан-

ные, полученные в январе 2022 г. на фазе роста 
25-го цикла солнечной активности. Анализ гео-
магнитной обстановки основан на рядах значе-
ний Kp, Dst, ap [URL OMNI2] и SME [URL SME] 
индексов. Характеристики межпланетных источ-
ников, вызвавших геомагнитные возмущения, 
представлены в работе параметрами плазмы сол-
нечного ветра (SW) и межпланетного магнитного 
поля (IMF) [URL OMNI2]. По параметрам SW 
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и IMF вычислен параметр Акасофу ε (поток энер-
гии, падающий из межпланетной среды на под-
солнечную магнитосферу [Akasofu, 1981]).

На рис. 1 показано, что в течение выбранного 
месяца магнитосферно-ионосферная система 
подвергалась воздействию 4 высокоскоростных 
потоков солнечного ветра, пиковые скорости ко-
торых были больше 450 км/c. Первый поток вы-
звал слабые возмущения 1–4 января с миниму-
мом Dst = – 25 нТл и максимумом Kp = 4; второй, 
более медленный поток 8–11 января, − слабую 
бурю 8–11 января с повышением Kp до буревого 
уровня Kp = 5 и понижением Dst до –27 нТл.

Возмущения 14–20 января являются умерен-
ной магнитной бурей (минимум Dst = –91 нТл, 
максимум Kp = 6-). Она была вызвана комплекс-
ной межпланетной неоднородностью, сформи-
рованной межпланетным выбросом корональной 
массы, набегающим на него высокоскоростным 
потоком солнечного ветра из корональной дыры 

CH1054 и еще двумя корональными выбросами. 
Скорость ветра немонотонно нарастала от 
360 км/c в лидирующей части неоднородности до 
700 км/c в предпоследний день бури. На переднем 
фронте неоднородности направленная к югу вер-
тикальная компонента межпланетного магнит-
ного поля (BzММП) усилилась до –17 нТл (на 
рисунке не показана). На панели (б) видно, что 
мощность внешнего источника бури 14–20 янва-
ря, оцениваемая с помощью параметра Акасо-
фу (ε), была в ~2 раза больше, чем мощность меж-
планетных источников других возмущений. Сле-
дует ожидать, что эту бурю сопровождали более 
сильные, чем наблюдавшиеся во время других 
событий, ионосферные возмущения. 

Серии слабых возмущений 22–23 и 25–31 ян-
варя характеризовались множественными 
понижениями Dst, из которых только 2 могут 
быть отнесены по минимумам Dst = –34  
и –44 нТл (25 и 31 января соответственно) к сла-
бым магнитным бурям. 
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Рис. 1. Вариации скорости солнечного ветра Vsw (а); параметра Акасофу ε (б); Dst- (в) и Кр- (г) индексов в январе 
2022 г. Горизонтальные линии отмечают на панели (а) — значение Vsw = 450 км/с, использующееся для выделения вы-
сокоскоростных потоков [Borovsky and Denton, 2010]; на панели (в) — уровни Dst= –30 и –50 нТл, являющиеся верх-
ними пороговыми значениями для слабых и умеренных магнитных бурь соответственно [Loewe and Prolss, 1997]; на 
панели (г) — уровень Kp =5, используемый как нижний порог при идентификации магнитных бурь. Символами q и d 
с цифрами отмечены магнитоспокойные и магнитовозмущенные дни в соответствии с их обозначениями на [URL qd].
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Отметим, что в  январе 2022 г. внезапного 
стратосферного потепления, оказывающего, со-
гласно Mikhailov et al. [2021], заметное влияние 
на развитие ионосферных возмущений не 
было [Vargin et al., 2022]. Зато в ~04:15 UT 15 янва-
ря произошло мощное извержение вулкана Tonga, 
вызвавшее генерацию перемещающихся ионос-
ферных возмущений (ПИВ) с основными перио-
дами ~10–30 мин, распространявшихся вдоль 
большого круга со скоростью 300–350 м/c [Zhang 
et al., 2022]. 

Конкретная цель нашей работы ‒ сравнить ио-
носферные возмущения, развивавшиеся во время 
умеренной бури 14–20 января, с теми возмущени-
ями, которые наблюдались в другие дни января 
2022 г., в том числе в дни слабых бурь и в q-дни. 

3. АНАЛИЗИРУЕМЫЕ ДАННЫЕ
Исследование основано на рядах месячных 

значений критической частоты и высоты пика 
F2-слоя (foF2 и  hmF2), предельной частоты 

Es-слоя (foEs), а также измерений МНЧ1F2, по-
лученных на трассах наклонного зондирова-
ния (НЗ) ионосферы.

Значения foF2, hmF2, foEs были измерены 
с помощью ионозонда DPS-4 и ЛЧМ-ионозон-
да, расположенных в Иркутске (52.5° N, 104° Е, 
Φ = 48.4°) с Δt =15 мин и в Торах, р. Бурятия 
(52° N, 103° E, Φ = 48°) со скважностью Δt =1 мин. 
Здесь Φ ‒ исправленная геомагнитная широта. 
Дополнительно используются наблюдения авро-
рального эха в Екатеринбурге (ЕКB) и Магадане 
(MGW) на КВ-радарах, ряды значений горизон-
тальной (H) составляющей геомагнитного поля, 
измеренной на обсерваториях Иркутск, Якутск 
(62° N, 129.7° Е, Φ = 56.8°) [URL Intermag] и ори-
гинальные данные магнитной обсерватории Но-
рильск (69.4° N, 88.1° Е, Φ = 65.3°), а также коор-
динаты полярной и экваториальной границ авро-
рального овала, взятые на сайте [URL Oval]. 
Карта размещения наблюдательных средств по-
казана на рис. 2.
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Рис. 2. Карта расположения средств зондирования ионосферы и магнитных обсерваторий. Точками показаны ио-
носферные станции и магнитные обсерватории; штриховыми и сплошными линиями − радиотрассы и лучи радаров 
соответственно, крестиками – средние точки радиотрасс. 
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Измерения МНЧ1F2 проводились со скваж-
ностью Δt = 5 мин на трассах Норильск–Торы 
и  Магадан–Торы (координаты средних точек 
трасс 60.9° N, 98° E, Φ = 57° и 58.5° N, 125.8° Е, 
Φ = 53.7° соответственно). 

Непрерывный мониторинг на указанных трас-
сах проводился с  использованием аппаратуры 
многофункционального ЛЧМ-ионозонда “Ионо-
зонд-МС” [Подлесный и др., 2013]. Северный 
участок первой трассы расположен в  субавро-
ральных широтах. Трасса Магадан–Торы отно-
сится к среднеширотным, но во время сильных 
магнитных возмущений ее северный участок, 
включая среднюю точку, может находиться в об-
ласти главного ионосферного провала (ГИП) [По-
лех и др., 2016]. В нашей работе исправленная 
геомагнитная широта (Φ) дна ГИП определена 
по модели, представленной в работе [Деминов 
и Шубин, 2018]. В ней широта дна ГИП вычис-
ляется по значениям ap-индекса в текущем и не-
скольких (в нашем случае в 4) предшествующих 
3-часовых интервалах. 

4. ИОНОСФЕРНАЯ БУРЯ  
14–20 ЯНВАРЯ 2022 Г.

На трех нижних панелях рис. 3 приведены гра-
фики изменений МНЧ1F2 на двух трассах и foF2, 
foEs над Иркутском, построенные по оригиналь-
ным данным, полученным в течение 4 дней, пред-
шествующих умеренной буре 14–20 января, и во 
время бури. Для удобства сравнения, на верхней 
панели приведен график изменения Dst-индекса.

Магнитная буря началась около 16 UT 14 ян-
варя с главной фазы и продолжалась до конца 
20 января. В предшествующие буре магнитоспо-
койные дни 10–13 января на трассе Магадан–
Торы и в Иркутске были зарегистрированы ноч-
ные положительные ионосферные возмущения. 
В это время значения МНЧ1F2 были на ~2 МГц, 
а foF2 на ~1.5 МГц больше месячных медианных 
значений (показаны на рисунке серой линией). 
Авторы работы [Mikhailov et al., 2004] называют 
такие события “Q disturbances” и полагают, что 
они генетически связаны с планетарными волна-
ми. Из-за наличия ночных Q-возмущений мы 
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Торы и в Иркутске в 09:30–13:00 UT (вечерние 
часы) 19 января. В максимуме возмущения теку-
щие значения МНЧ1F2 и foF2 были соответствен-
но на 60 и 40% больше фоновых. 

5. ОБСУЖДЕНИЕ
Для сопоставления указанных в разделе 4 эле-

ментов ионосферной бури 14–20 января 2022 г. 
с ионосферными возмущениями, наблюдавши-
мися в другие дни этого месяца, мы выделили из 
исходных рядов данных короткопериодные (пе-
риоды 0.5 < T ≤ 3.5 ч, диапазон крупномасштаб-
ных и среднемасштабных ПИВ [Hunsucker, 1982]) 
и продолжительные (36 > Т > 3.5 ч) возмущения. 
Для проведения этой процедуры был использован 
полосовой фильтр, не дающий фазовых сдви-
гов [Marmet, 1979]. Изменения нормированных 
отклонений продолжительных возмущений 
МНЧ1F2 и foF2 (ΔМНЧ1F2 и ΔfoF2), наблюдавших-
ся в течение месяца, от их фоновых значений (опре-
делены для тех же периодов) показаны на рис. 4. 

Укажем те специфические элементы ионо
сферной бури 14–20 января 2022 г., которые зна-
чительно отличаются от возмущений, происхо-
дивших в другие дни. 

5.1. Прежде всего, это указанное в п. 4.1. един-
ственное явное ионосферное возмущение, на-
блюдавшееся в  январе 2022 г. на трассе Но-
рильск–Торы. Оно развивалось в виде увеличе-
ния МНЧ1F2, начавшегося в главную фазу бури 
около 19 UT 14 января и достигшего в максимуме 
значения ΔfoF2 ~ 140% в 3–6 раз большего, чем 
положительные возмущения, наблюдавшиеся 
в другие дни. На левых панелях рис. 5 видно, что 
рост МНЧ1F2 начался после смещения дна ГИП 
до широты меньшей, чем Φ средней точки трас-
сы. Отмеченный вместе с ним в п. 4.1. скачко-
образный рост МНЧ1F2 на трассе Магадан–Торы 
в 22:00–22:05 UT тоже произошел после перехода 
средней точки трассы с экваториальной на поляр-
ную стенку ГИП. Анализ ионограмм НЗ показал, 
что рост МНЧ1F2 в этот период времени обуслов-
лен многолучевым распространением мода 1F2, 
так как полярная стенка ГИП близко подходит 
к средней отражающей области ионосферы радио
трассы Магадан–Торы. Кроме того, дополнитель-
ный вклад в увеличение МНЧ1F2 могли внести 
авроральные высыпания во время суббури, про-
явления которой в геомагнитных вариациях по-
казаны на рис. 5 справа. 

На субавроральной ст. Якутск быстрое пони-
жение H-компоненты магнитного поля, харак-
терное для взрывной фазы суббури, совпало 
по  времени с  увеличением SME-индекса на 
~400 нТл [URL SME]. Оно началось примерно 

выбрали в качестве фоновых месячные медиан-
ные значения ионосферных параметров.

Графики, приведенные на рис. 3, показывают, 
что в рассматриваемом нами долготном секторе 
ионосферная буря началась перед 19:00 UT 14 ян-
варя, примерно через 3 ч после начала главной 
фазы магнитной бури, и закончилась через 5 дней 
(около 14:00 UT 19 января в предпоследний день 
поздней восстановительной фазы бури). Укажем 
отчетливо видные на графиках возмущения, ко-
торые могут быть проявлениями ионосферной 
бури.

4.1. Положительное ионосферное возмуще-
ние, наблюдавшееся на трассе Норильск–Торы 
в 18:53–23:53 UT 14 января после 200-минутного 
блэкаута, и резкое увеличение МНЧ1F2 от 8 до 
13.6 МГц, зарегистрированное на трассе Мага-
дан–Торы в  22:00–22:05 UT 14 января (между 
двумя сеансами зондирования) после отрица-
тельного возмущения. На рис. 3 эти элементы 
отмечены черными стрелками. На трассе Но-
рильск–Торы возмущение было максимальным 
в 20:58–21:13 UT 14 января.

4.2. Выделенные овалами дневное отрицатель-
ное возмущение, зарегистрированное на трассе 
Магадан–Торы в 23:45–04:50 UT 14–15 января, 
и частично перекрывающееся с ним по времени 
продолжительное дневное положительное возму-
щение, развивавшееся над Иркутском в 02:00–
09:00 UT 15 января. 

4.3. Усиление короткопериодных вариаций 
МНЧ1F2 и foF2 в ночные часы 15 января на трас-
се Магадан–Торы (в  10–21 UT; 18.5–05.5 LT) 
и  над Иркутском (в  13–22 UT; 20–05 LT). На 
рис. 3 указанные интервалы отмечены серыми 
прямоугольниками на оси абсцисс панелей в, г. 
Средний период вариаций T ≈ 110–120 мин. 

4.4. Наблюдавшаяся в Иркутске и Торах ин-
тенсификация диффузных утренних (серая стрел-
ка на панели г) и дневных (черный прямоуголь-
ник на оси абсцисс панели г) плоских спорадиче-
ских слоев с большими предельными частотами, 
максимальные значения которых равны соответ-
ственно 7 и 5.5 МГц. 

4.5. Отмеченные овалами ночные отрицатель-
ные возмущения, наблюдавшиеся в  Иркутске 
и на трассе Магадан–Торы 16 января в близких 
временных интервалах. На трассе Магадан–Торы 
ночное отрицательное возмущение перешло в бо-
лее слабое дневное отрицательное возмущение, 
продолжавшееся до 05:00 UT 17 января. 

4.6. Последнее заметное ионосферное возму-
щение (выделено серым прямоугольником) на-
блюдалось одновременно на трассе Магадан–
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через 5 мин после резкого увеличения МНЧ1F2 
на трассе Магадан–Торы. На авроральной обс. 
Норильск и среднеширотной обс. Иркутск отри-
цательное и положительное возмущения Н соот-
ветственно начались на ~40 мин позднее, что 
указывает на продвижение суббуревых явлений 
в сторону запада. По данным MGW-радара раз-
витие суббури сопровождалось увеличением доп
леровских скоростей аврорального эха до макси-
мальных для данной бури значений ±400 м/c. 
Сигналы эха приходили из сектора, включающе-
го меридиан Якутска, а их источники были рас-
положены в окрестности экваториальной грани-
цы аврорального овала (см. рис. 6). При этом 
севернее этой границы скорости были направле-
ны на запад; южнее нее ‒ на восток, в сторону 
радара, что соответствует области усиленного 
западного электроджета. 

5.2. Вторым специфическим элементом рас-
сматриваемой ионосферной бури является акти-
визация короткопериодных вариаций МНЧ1F2 
и  foF2 в  ночные часы 15 января, отмеченная 
в п. 4.3. На рис. 7 показано, что на трассе Мага-
дан–Торы усиление короткопериодных вариаций 
МНЧ1F2 (отмечено стрелкой с ломаной линией) 
наблюдалось в 10–21 UT (18.5–05.5 LT) 15 января. 
В этом интервале среднеквадратическое отклоне-
ние МНЧ1F2 составляло 0.8 МГц, а в эти же часы 
в  другие дни ‒ в  2 раза меньше, всего лишь 
0.4 МГц. Над Иркутском активизация короткопе-
риодных вариаций foF2 (отмечена стрелкой) про-
изошла примерно на час позже ‒ в 13–22 UT (20–
05 LT). Она характеризовалась среднеквадратиче-
ским отклонением S = 0.24 МГц в  ~2.5 раза 
большим, чем в другие дни (S = 0.1 МГц). Менее 
значительное (примерно в 1.5 раза, до S = 0.6 МГц) 
усиление короткопериодных вариаций МНЧ1F2 
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наблюдалось также в 10–21 UT 9 января только на 
трассе Магадан–Торы. Этот интервал тоже отме-
чен стрелкой с ломаной линией. Сравнивая гра-
фики, видим, что в обоих случаях ночные активи-
зации короткопериодных составляющих вариа-
ций МНЧ1F2 произошли на фазе восстановления 
умеренной и слабой магнитных бурь примерно 
через сутки после того, как дно ГИП сместилось 
до средней точки трассы.

Амплитуды короткопериодных вариаций 
МНЧ1F2 и foF2, наблюдавшихся в дневные часы 
января 2022 г. (на рисунке не показаны), были 
в 3 раза больше (S = 1.02 и 0.32 МГц соответствен-
но) амплитуд ночных вариаций. Они слабо меня-
лись день ото дня, в том числе при переходе от 
магнитоспокойных дней 10–13 января к магни-
товозмущенному дню 15 января. Средний период 
наблюдавшихся вариаций T ≈ 110–120 мин. Он 
близок к периоду ПИВ T = 1.8 ч, связанных с гео
магнитными бурями [Ding et al., 2008]. Однако 
перманентный характер короткопериодных ва-
риаций МНЧ1F2 и foF2, представленных в статье, 
не позволяет отождествить их с ПИВ, эпизодиче-
ски возникающими в высоких широтах во время 
геомагнитных возмущений [Hunsucker, 1982].

5.3. К особым элементам ионосферной бури 
мы отнесли также указанную в п. 4.4. активиза-
цию плоских среднеширотных спорадических 
слоев в утренние и дневные часы 15–16 января. 
На верхней левой панели рис. 8 показано, что 
спорадические слои с foEs от 1 до 7 МГц наблю-
дались ежедневно. Число сеансов, в которых их 
предельные частоты были больше 3.1 МГц (верх-
ней квартили месячного ряда значений foEs), 
менялось ото дня ко дню от 1 до 17. Максималь-
ное число ионограмм с  foEs > 3.1 МГц было 
получено в  17 из 18 сеансов, проведенных 
в 03:30–07:45 UT (10:30–14:30 LT) 16 января. На 
нижней левой панели рис. 8 видно, что в эти 
часы активизация спорадических слоев наблю-
далась только 16 января. К особенностям дан-
ной ионосферной бури можно отнести также 
активизацию утренних спорадических слоев 
в 20:45–22:45 UT (03:45–05:45 LT) 15 января, во 
время которой в трех последовательных сеансах 
были зарегистрированы наибольшие для января 
2022 г. предельные частоты 5.6, 6.9 и 6.6 МГц. 
В утренние часы значение foEs = 6.6 МГц, близ-
кое к наблюдавшемуся 15 января, было зареги-
стрировано только 2 января в 1 из 96 проведенных 
в этот день сеансов. В работе [Tang et al., 2022] 
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показано, что образование плотных Es-слоев на 
средних широтах во время геомагнитных бурь 
может быть связано с усилением ветра в мезосфе-
ре и нижней термосфере. 

5.4. О специфике положительных и отрица-
тельных ионосферных возмущений, отмеченных 
в пунктах 4.2., 4.5. и 4.6., можно судить по графи-
кам, приведенным на рисунках 4, 5, 9 и 10.

На рис. 9 для каждого дня января 2022 г. пред-
ставлены раздельно положительные (панель а) 
и отрицательные (панель б) значения ΔМНЧ1F2 
на трассе Магадан–Торы. Под ними показано 
время регистрации положительных значений 
ΔМНЧ1F2, лежащих над верхней квартилью, 
и отрицательных, лежащих под нижней кварти-
лью, месячных рядов этих параметров. В таком 
же формате на панелях (в) и (г) рис. 9 представ-
лены положительные и отрицательные значения 
ΔfoF2, полученные в Иркутске. 

5.4.1. Видно, что относительно слабое дневное 
положительное возмущение с ΔfoF2 ≤ 23%, заре-
гистрированное в Иркутске в 02–09 UT (09–16 LT) 
15 января (см. п. 4.2.) было более ранним, чем 
превышающие его по величине вечернее поло-
жительное возмущение с ΔfoF2 ~ 40% 19 янва-
ря  (см. п. 4.6.) и  менее значительные вечерние 
положительные возмущения с ΔfoF2 ~ 25–38%, 
наблюдавшиеся в Иркутске в 08–13 UT (15–20 LT) 
25 и 27–31 января. 

Второй особенностью положительного возму-
щения foF2 15 января является то, что ему соот-
ветствует понижение МНЧ1F2 на трассе Мага-
дан–Торы. В отличие от этого, вечерние положи-
тельные возмущения foF2 19, 25 и  27 января 
наблюдаются почти одновременно с вечерними 
положительными возмущениями МНЧ1F2 на 
трассе Магадан–Торы. Особенно ярко это проя-
вилось в вечерние часы 19 января во время уси-
ления поля кольцевого тока и 25 января во время 
слабой магнитной бури (см. рис. 1 и рис. 4). Судя 
по морфологическим признакам, вечерние поло-
жительные возмущения являются проявлениями 
сумеречного эффекта (“Dusk Effect”) [Buonsanto, 
1999]. Возвращаясь к рис. 5, видим, что пониже-
ние МНЧ1F2 на трассе Магадан–Торы в первые 
часы 15 января последовало за пересечением дна 
ГИП средней точки трассы. 

Третье отличие дневного положительного воз-
мущения 15 января от сумеречных эффектов по-
казано на верхних панелях рис. 10. Видно, что 
значения foF2 растут во время увеличения пико-
вой высоты F2-слоя (панель а), в то время как 
в случаях сумеречных эффектов (панели б, в) про-
исходит понижение hmF2. 

Отметим, что дневные положительные возму-
щения NmF2 характерны для средних широт 
в  зимние месяцы [Buonsanto, 1999]. В  рабо-
те [Paznukhov et al., 2009] показано, что на сред-
них широтах положительные ионосферные воз-
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мущения, наблюдаемые во время геомагнитных 
бурь, запаздывают относительно повышения пи-
ковой высоты F2-слоя. При этом величина за-
держки между увеличением hmF2 и foF2 состав-
ляет 1–2 ч. В нашем случае она составляет около 
Δt ≈ 1.5 ч. Время начала положительной фазы 
ионосферной бури зависит от местного времени 
наблюдательного пункта в момент начала геомаг-
нитной бури. Используя график, приведенный на 
рис. 10 в работе [Paznukhov et al., 2009], мы полу-
чили, что положительное ионосферное возмуще-
ние могло начаться в Иркутске через 8–9 ч после 
начала бури, то есть в 00–01 UT, что соответству-
ет, также как величина Δt, полученным нами ре-
зультатам анализа экспериментальных данных. 

В совокупности, перечисленные отличия указы-
вают на то, что в дневные часы 15.01.2022 г. в рас-
сматриваемом долготном секторе на средних ши-
ротах преобладало влияние ветра, направленного 
к  экватору, а  в субавроральных − перемещения 
ГИП и, возможно, изменение состава атмосферы.

5.4.2. В п. 4.5. предыдущего раздела мы отме-
тили, что 16.01.2022 г. ночное отрицательное 
ионосферное возмущение наблюдалось почти 
одновременно на трассе Магадан–Торы и в Ир-
кутске. Это отчетливо видно на рис. 3, а также на 
рис. 9 (панели б, г), на котором это возмущение 
отмечено стрелками. На этих же панелях видно, 
что отрицательные возмущения, сравнимые по 
глубине и времени появления с отрицательным 
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возмущением 16 января, наблюдались на трассе 
Магадан–Торы во время слабых геомагнитных 
возмущений 1 и 2 января. В Иркутске наиболее 
близкие к нему по глубине отрицательные возму-
щения (ΔfoF2 ≈ –40%) наблюдались в магнито-
спокойные дни 6 и 7 января, а по времени появ-
ления 27.01.2022 г., – в восстановительную фазу 
слабой магнитной бури. Однако 6, 7 января по-
нижения foF2 наблюдались не в ночные, а в по-
луденно-вечерние часы, а возмущение 27 января 
имело гораздо меньшую глубину ΔfoF2 ≈ –30%. 

Приведенные на рис. 10 (панели г–е) графики 
демонстрируют тенденцию увеличения hmF2 во 
время отрицательных ионосферных возмущений, 
развивавшихся над Северо-Восточным регионом 
России в январе 2022 г. 

6. ВЫВОДЫ
Анализ данных вертикального и  наклонного 

зондирования, полученных в Северо-Восточном 
регионе России в январе 2022 г., показал, что ионо
сферная буря, сопровождавшая магнитную бурю 
14–20 января 2022 г., содержала следующие, не на-
блюдавшиеся в другие дни этого месяца, элементы.

1. Продолжительное увеличение МНЧ1F2 на 
трассе Норильск–Торы, начавшееся 14 января 
через 3 ч после начала главной фазы с повышения 
МНЧ1F2 относительно фона на 100% и, спустя 
2 ч, на ΔМНЧ1F2 = 120%.

2. Резкий, произошедший между 2 сеансами 
зондирования на трассе Магадан–Торы, рост 
МНЧ1F2 на 5.6 МГц (на ~70%). Он был зареги-
стрирован 14 января через 6 ч после начала глав-
ной фазы.

3. Активизация возмущений foF2 и МНЧ1F2 
с периодами 0.5–3.5 ч, наблюдавшаяся над Ир-
кутском и  на трассе Магадан–Торы в  ночные 
часы 15 января (первый день восстановительной 
фазы бури). 

4. Спорадические слои с большими предель-
ными частотами, непрерывно регистрировавши-
еся в Иркутске в течение 4 дневных часов 16 ян-
варя (второй день восстановительной фазы бури).

События 1 и 2 могли быть связаны с положе-
нием средних точек радиотрасс относительно по-
лярной и экваториальной “стенок” ГИП. На по-
лярной стенке ГИП, т.е. в зоне диффузных высы-
паний, во время геомагнитных возмущений 
концентрация электронов увеличена. Резкое уве-
личение МНЧ1F2 на трассе Магадан–Торы могло 
быть связано с суббурей, внесшей дополнитель-
ный вклад в поток высыпающихся электронов. 
Суббуря была зарегистрирована на субаврораль-
ной обс. Якутск, расположенной вблизи средней 
точки трассы Магадан–Торы. 

Причины усиления флуктуаций МНЧ1F2 
и foF2 15 января и образования среднеширотных 
спорадических слоев 15–16 января не совсем 

Рис. 10. Для положительных (а–в) и отрицательных (г–е) возмущений, наблюдавшихся в Иркутске в январе 2022 г., 
показаны изменения абсолютных отклонений foF2 и hmF2 от их фоновых значений. 
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ясны. Основываясь на спутниковых данных, по-
лученных вблизи точки либрации L1, мы полага-
ем, что активизация ночных возмущений с перио
дами 0.5–3.5 ч в восстановительную фазу бури 
могла быть связана с усилением термосферного 
ветра и воздействием флуктуаций давления сол-
нечного ветра и межпланетного магнитного поля 
на находящуюся в  метастабильном состоянии 
магнитосферно-ионосферную систему.

Длительное положительное возмущение, на-
блюдавшееся в Иркутске в дневные часы 15 ян-
варя, развивалось на фоне увеличения высоты 
максимума F2-слоя и отрицательного ионосфер-
ного возмущения на трассе Магадан–Торы. В со-
вокупности это указывает на то, что в дневные 
часы 15.01.2022 г. в рассматриваемом долготном 
секторе на средних широтах преобладало влияние 
ветра, направленного к экватору, а в субаврораль-
ных ‒ смещение дна ГИП до широты средней 
точки трассы Магадан–Торы и изменение соста-
ва атмосферы.
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Specific Features of Ionospheric Disturbances Accompanying  
the 14–20 January 2022 Magnetic Storm
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We conducted the analysis of ionospheric disturbances that occurred during the moderate magnetic storm of 
14–20 January 2022. The study is based on data of vertical and oblique ionospheric sounding obtained in the 
Northeastern region of Russia, and supplemented by observations at HF radars and magnetic observatories. 
It has been revealed that the amplitudes of positive and negative ionospheric disturbances accompanying 
this storm are comparable to those observed on other days of January during weak magnetic storms and 
disturbances. Specific features of the disturbances observed only during the storm in question are as follows: 
(1) a midnight–morning increase of the maximum observed frequency of one-hop mode of HF radio wave 
propagation on the paths Norilsk — Tory and Magadan — Tory on 14 January; (2) enhanced nighttime 
fluctuations in F2-layer critical frequency in Irkutsk and the maximum observed frequency of one-hop 
mode on the path Magadan — Tory on 15 January; (3) Morning–midday Es layers with limiting frequencies 
reaching 7 MHz that were observed in mid-latitudes at the end of the first and beginning of the second day 
of the storm recovery phase.

Keywords: magnetic storm, ionospheric sounding, ionospheric disturbances, radio wave propagation, 
maximal observed frequency, F2-layer critical frequency, main ionospheric trough, diffuse electron 
precipitation
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