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Зафиксированы события индуцированных высыпаний протонов из внутреннего радиационно-
го пояса, сопровождавшие примерно половину (11) из 25 аномальных электронных высыпаний, 
зарегистрированных с борта ИСЗ “Метеор-М № 2” в 2014−2022 гг. в Океании в низких широ-
тах в утренние часы местного времени в спокойных геомагнитных условиях. Предполагается, что 
такие события могли бы быть спровоцированы попаданием протонов в циклотронный резонанс 
с  низкочастотным излучением, стимулированным в ионосфере плавучим нагревным стендом. 
Также обсуждаются наблюдаемые эффекты в аномальных электронных высыпаниях, которые 
можно интерпретировать в рамках концепции плавучего нагревного стенда. 
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1. ВВЕДЕНИЕ
Внутренний радиационный пояс заполнен, 

в том числе, и энергичными протонами. Он от-
носительно стабилен – среднее время пребыва-
ния там таких протонов ~10 лет. Развиты теоре-
тическая [Selesnik et al., 2007] и эмпирическая (по 
данным наблюдений спутников Van-Allen 
Probes) [Selesnik et al., 2018] модели протонного 
радиационного пояса.

Тем не менее, время от времени отмечаются 
протонные высыпания из этого пояса. Низкоши-
ротные зоны протонных высыпаний в энергиях 
(0.58−35) МэВ наблюдались с  борта спутника 
OHZORA [Nagata et al., 1988]. Сообщалось 
[Biryakov et al., 1996] о  высыпаниях протонов 
с энергиями до нескольких МэВ из внутреннего 
радиационного пояса, наблюдавшихся на орбите 
космической станции “Мир” (~400 км) вблизи 
экватора. Существование вблизи геомагнитного 
экватора потоков высыпающихся протонов 
с энергиями более 30 МэВ зарегистрировали из-

мерения с борта ИСЗ “CORONAS-I” [Bashkirov 
et al., 1999]. Были измерены [Petrov et al., 2008] 
и смоделированы [Petrov et al., 2009] спектры вы-
сыпающихся протонов с энергиями до 10 МэВ 
вблизи геомагнитного экватора (L < 1.15) на низ-
ких (<1000 км) орбитах. 

Сильная магнитная буря ноября 2003 г. приве-
ла к почти полному высыпанию протонов с энер-
гиями 27−45 МэВ из внутреннего радиационного 
пояса [Selesnik et al., 2013]: пояс практически опу-
стел. Кроме сильных магнитных бурь в качестве 
возможной причины событий наблюдаемых вы-
сыпаний протонов из внутреннего радиационного 
пояса обсуждалось [Shao et al., 2009] и выходящее 
в космос излучение наземных радиопередатчиков. 

По данным наблюдений с борта ИСЗ “Мете-
ор-М № 2” выявлено 25 аномальных возрастаний 
потоков электронов [Гинзбург и др., 2023]. Эти 
редкие события зарегистрированы в 2014−2022 гг. 
в  Океании в  низких широтах, в  утренние часы 
местного времени в  спокойных геомагнитных 
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условиях в  энергиях от ~100 кэВ до несколь-
ких МэВ. Предполагается, что наблюдались высы-
пания электронов из внутреннего радиационного 
пояса: при баунс-колебаниях электроны попадали 
в  циклотронный резонанс с  радиоизлучением, 
инициированным наземными и/или судовыми 
передатчиками в утренние часы местного времени.

Цель настоящего сообщения – поиск индуци-
рованных высыпаний протонов (20−45 МэВ) из 
внутреннего радиационного пояса во время вы-
шеназванных 25 электронных событий и возмож-
ной взаимосвязи этих протонных и электронных 
явлений.

2. РЕЗУЛЬТАТЫ СПУТНИКОВЫХ 
НАБЛЮДЕНИЙ ПРОТОННЫХ 

ВЫСЫПАНИЙ
Метеорологический спутник РФ “Метеор-М 

№ 2” запущен 8.07.2014 г. Орбита − солнеч-
но-синхронная, высота в  восходящем узле  
h = 832 км, наклонение i ~98.8°, период обраще-
ния Т = 101.3 мин. Ориентация спутника – трех
осная, ось X – по вектору скорости, ось Z – от 
центра Земли к спутнику, в сторону открытого 
космоса. 

Регистрирующая потоки заряженных частиц 
аппаратура спутника включала в себя приборы 
ГАЛС (разработан в  ИПГ) и  СКЛ (разработан 
в НИИЯФ МГУ). Прибор ГАЛС имел в своем со-
ставе счетчик Черенкова (канал СЧ, угол реги-
страции 4π) и два газоразрядных счетчика Гейге-
ра (каналы СГ1 и  СГ2, углы регистрации 2π). 
Прибор СКЛ имел в своем составе две телеско-
пические сборки ДАС1. Каждая сборка состояла 
из полупроводникового (кремниевого) детектора 
и расположенного за ним на одной продольной 
оси сцинтилляционного детектора (CsI). В табл. 1 

представлены расчетные энергетические харак-
теристики протонных каналов Д3 и Д4, логика 
которых строилась на одновременных показани-
ях полупроводникового и  сцинтилляционного 
детекторов; отделение сигналов протонов от сиг-
налов электронов в каналах Д3 и Д4 осуществля-
лось на основе совпадений и  антисовпадений 
электрических импульсов с  обоих детекторов 
с  величиной, пропорциональной выделяемой 
в них энергии пролетающей частицей. Угловые 
размеры поля регистрации ДАС − 30°.

Сборки установлены в двух взаимно перпен-
дикулярных направлениях – по оси X и по оси Z. 
В этой же табл. 1 представлены и энергетические 
характеристики каналов прибора ГАЛС. Частота 
опроса всех каналов – 1 с, время накопления – 
1  с. В  дальнейшем для улучшения статистики 
(особенно статистики малых потоков) в работе 
использовались накопленные за 6 с показания. 
В случае маленьких потоков они использовались 
непосредственно в виде количества зарегистри-
рованных за 6 с частиц. В случае достаточно боль-
ших потоков использовались значения, выражен-
ные в единицах интенсивностей. 

В Океании траектория ИСЗ “Метеор-М №2” 
пролегает почти в направлении геомагнитного 
поля. Поэтому в качестве наиболее подходящего 
для исследования индуцированных высыпаний 
протонов в наблюдавшихся 25 электронных со-
бытиях вблизи экватора мы выбрали телескоп 
ДАС1, установленный по оси Х (по вектору ско-
рости). Как и любой сцинтиллятор, CsI чувстви-
телен не только к протонам, но и к электронам. 
Поток электронов с энергиями более 10 МэВ во 
внутреннем радиационном поясе очень невелик, 
а с энергиями более 20 МэВ − исчезающе мал. 
Поэтому в канале Д4, чувствительном к энергиям 
20−45 МэВ, регистрируются только протоны. Ка-
нал же Д3 воспринимает, вообще говоря, и элек-
троны с энергией более 10 МэВ.

Для исследования протонных высыпаний мы 
использовали канал Д4, собрав в одну выборку 
показания этого канала, зарегистрированные во 
всех 25 рассматриваемых событиях; общий объем 
выборки составляет 2578 точек, каждая из кото-
рых соответствует количеству протонов, зареги-
стрированных в канале Д4 в течение 6 с.

На рис. 1 приведена относительная частота 
встречаемости, построенная по этой выборке. 
Видно, что почти 90% времени датчик “мол-
чал” − протоны в канале не регистрировались, 
что связано как с местом наблюдения событий 
(на противоположной от Южно-Атлантической 
аномалии стороне Земли, где магнитное поле по-
вышено), так и со спокойными геомагнитными 

Таблица 1. Энергетические интервалы каналов прибо-
ров ГАЛС и СКЛ

Прибор Канал Диапазон энергий, МэВ

ГАЛС

протоны электроны

СЧ >600 >8

СГ1 >15 >0.8

СГ2 >25 >2.1

СКЛ, ДАС1

протоны

Д3 10−160

Д4 20−45
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условиями, когда были зафиксированы все собы-
тия. Форма относительной частоты встречаемости 
позволяет предположить экспоненциальное рас-
пределение скоростей счета, а максимальная заре-
гистрированная скорость счета (2 протона / 6 с) – 
оценить параметр экспоненциального распреде-
ления λ из условия, что вероятность того, что 
скорость счета не превысит этого максимума, 
составляет не менее 0.99995; это дает λ≈5. При 
экспоненциальном распределении вероятность 
появления следующего события не возрастает 
и не убывает с течением времени, отсчитываемо-
го с момента регистрации предыдущего события. 
Это оправдывает использование такого распре-
деления при описании случайного появления 
протонов на орбите ИСЗ “Метеор-М № 2” как 
при распаде нейтронов альбедо, так и в результа-
те редких протонных кулоновских столкновений 
во внутреннем радиационном поясе. 

Мы провели проверку нашей статистической 
выборки на наличие выбросов с использованием 
одностороннего порога, предложенного Do
voedo [2011] для экспоненциального распределения 
в виде: UF = Q50+K(n)(Q75−Q50), где UF (upper fence) – 
порог, Q50 = ln2/λ – второй квантиль (медиана), 
Q75 = ln4/λ = 2Q50 – третий квантиль, K(n) – коэф-
фициент, зависящий от объема выборки. Следуя 
Dovoedo [2011], для нашей выборки мы приняли 
К(2578) = 13.212, так что UF = ln2/5+13.212 (2ln2/5− 
–ln2/5) = (1+13.212) ln2/5 = 14.212 × 0.13869 = 1.97, 
и каждое превышение этого порога в данных на-
блюдений мы считали выбросом. Значения коэф-
фициентов К(n) затабулированы Dovoedo [2011] 
путем проведения численных экспериментов 
с заданным в аналитическом виде (с участием, 

в том числе, неполной бета-функции) выражени-
ем для вероятности того, что одно (или несколь-
ко) значений из выборки экспоненциального 
распределения неверно классифицируются как 
выбросы. 

В табл. 2 собраны 11 из 25 событий, рассмо-
тренных в работе [Гинзбург и др., 2023], в каждом 
из которых наблюдался, по крайней мере, один 
выброс, т.е. когда в канале Д4 в течение 6 с реги-
стрировалось 2 или более протонов.

Оказалось, что в 11 событиях, где отмечены вы-
бросы, протоны в канале Д4 регистрируются гораз-
до чаще, чем в событиях, где выбросы отмечены не 
были. На рис. 2 в качестве примеров приведены 
показания канала Д4 в событии 15.08.2016 г. − од-
ном из 11 событий (левая половина рис. 2), где на-
блюдались выбросы, и (для сравнения) показания 
канала Д4 в одном (22.11.2019 г.) из остальных 14 со-
бытий (правая половина рис. 2), где выбросы не 
наблюдались. Показания черенковского счетчика 
приняты признаком событий.

Видно, что на левом из рис. 2 в канале Д4 на-
блюдалось существенно больше импульсов, в том 
числе естественно, и импульсы, классифициро-
ванные как выбросы из экспоненциального рас-
пределения. Это может свидетельствовать в поль-
зу того, что помимо распада нейтронов альбедо 
и кулоновских столкновений протонов во вну-
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Рис. 1. Относительная частота встречаемости прото-
нов в канале Д4, зарегистрированных в 25 аномаль-
ных событиях.

Таблица 2. События, в каждом из которых наблюдался, 
по крайней мере, один выброс в показаниях канала Д4

Дата события Число 
выбросов Lначало Lконец

13.08.2015 1 1.14 1.14

11.06.2016 1 1.15 1.98

15.08.2016 2 1.42 1.1

30.09.2016 1 1.19 2.02

07.09.2017 2 1.83 1.18

27.12.2019 2 2.94 1.27

11.02.2020 1 1.09 1.25

02.03.2020 1 1.14 1.1

18.01.2021 1 1.22 1.09

24.05.2021 1 1.08 1.22

18.06.2021 2 1.14 1.17
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треннем поясе, уже учтенных в рамках экспонен-
циального распределения, более частому появле-
нию протонов на орбите ИСЗ “Метеор-М № 2” 
в событиях, где отмечены выбросы, способство-
вало еще что-то.

3. ОБСУЖДЕНИЕ
Протоны с энергиями (20−45) МэВ – нереля-

тивистские. В Океании, где были зарегистрирова-
ны события, напряженность магнитного поля на 
орбите ИСЗ “Метеор-М № 2” варьируется от 0.25 
до 0.29 Гс, что соответствует вариации протонной 
циклотронной частоты от 381.2 до 442.1 Гц. 

Если считать причиной выбросов в канале Д4 
циклотронный резонанс протонов, пребываю-
щих вблизи зеркальной точки отражения, с элек-
тромагнитными волнами, излучаемыми на часто-
тах ~400 Гц, и принять во внимание, что в утрен-
ние часы местного времени (~8 утра), когда были 
зарегистрированы все 11 событий, прохождение 
во внутренний радиационный пояс сигналов на-
земных передатчиков с частотами ~400 Гц блоки-
руется ионосферой [Meredith et al., 2019], то сле-

дует заключить, что единственный тип наземно-
го и/или судового передатчика, способный 
местным утром спровоцировать высыпания про-
тонов − это нагревный стенд, работающий на 
несущей частоте 5−7 МГц (близкой к критиче-
ской частоте слоя F2 в это время), модулируемой, 
в частности, частотой ~400 Гц. При этом источ-
ником радиоволн с частотой ~400 Гц во внутрен-
нем радиационном поясе является диамагнитный 
ток, развивающийся в слое F2 ионосферы по гра-
ницам зоны нагрева, сила которого осциллирует 
на частоте модуляции ~400 Гц.

При широком спектре модуляции осциллиру-
ющий ток, возникающий по границам зоны на-
грева в слое F2 ионосферы, может порождать во 
внутреннем радиационном поясе волны разных 
частот. Они способны за счет циклотронного ре-
зонанса спровоцировать там не только протон-
ные высыпания, но и питч-угловую диффузию 
электронов в конус потерь при баунс-колебаниях. 
Ларморовский радиус электронов пояса не пре-
восходит нескольких километров, а длина трассы 
баунс-колебаний таких электронов между точка-
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Рис. 2. Примеры событий, когда в  показаниях канала Д4 наблюдались выбросы протонов (15.08.2016 г., 20:59:27− 
21:07:27 UT) (графики (а) и (в)) и когда выбросы не наблюдались (22.11.2019 г., 20:59:45−21:07:03 UT) (графики (б) 
и (г)). По оси абсцисс на всех графиках отложено значение параметра Мак-Илвейна (L) вдоль траектории ИСЗ “Мете-
ор-М № 2”, по осям ординат на верхних графиках интенсивности потоков, на нижних – число протонов, зарегистри-
рованное в канале Д4 за 6 с. Графики (а) и (б) – это показания черенковского счетчика, принятые в качестве признака 
события.
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ми отражения вдоль геомагнитной силовой ли-
нии составляет тысячи километров, что позволя-
ет геометрически ограничиться приближением 
ведущего центра. Наименьшая энергия регистри-
руемых в событиях электронов ~100 кэВ предпо-
лагает релятивистское рассмотрение. Поскольку 
частота волны меньше электронной циклотрон-
ной частоты (~1 Мгц), то в резонанс попадают 
электроны пояса, которые при баунс-колебаниях 
приближаются к ионосферной области нагрева. 
В этом случае условие циклотронного резонанса 
записывается в виде:

eB
m2

1 1 12 1 2 2 1 2

�
� � � ��� � � �� � �� ��/ /

cos .�

Здесь e – элементарный электрический заряд; 
m – масса покоя электрона; B – величина геомаг-
нитного поля в  точке взаимодействия волны 
и электрона; α – угол между направлением рас-
пространения волны и направлением движения 
ведущего центра электрона; Ω – частота волны; 
β = v/c, v – скорость электрона; с – скорость све-
та. В левой части уравнения (1) записана цикло
тронная частота электрона (с учетом релятивист-
ского увеличения его массы), а в правой части − 
частота электромагнитной волны, сдвинутая 
в соответствии с релятивистским эффектом До-
плера (с учeтом того, что электрон движется на-
встречу волне).
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и учитывая, что (2�m
eB
�) ≪ 1, 0 < β < 1, получаем:

�
�

�� �1
m
eB
�

cos ,

� � �� �eB
m� �

�
cos

1 .

Отсюда следует, что для попадания в цикло
тронный резонанс электронов с энергией 8 МэВ 
и выше (черенковский счетчик СЧ) частота моду-
ляции должна составлять ~3 кГц и ниже, для элек-
тронов с энергией 2.1 МэВ и выше (гейгеровский 
счетчик СГ2) ~30 кГц и ниже, и для электронов 
с энергией 0.8 МэВ и выше (гейгеровский счет-
чик СГ1) ~125 кГц и ниже. Это значит, что, поми-
мо циклотронного резонанса электронов на суб-
гармониках несущей частоты (5−7  Мгц)  [Гин

збург и  др., 2023], предполагаемого во всех 
25 событиях, в 11 из 25 событий возможен также 
циклотронный резонанс на волнах, которые ге-
нерируются и на частотах модуляции. Если в ка-
ких-либо (из 11 выявленных) событиях несущая 
частота модулирована помимо ~400 Гц и кило-
герцовыми частотами, то задействуется дополни-
тельный к резонансу на субгармониках механизм 
стимулирования электронных высыпаний. Сле-
довательно, можно ожидать, что и  среднее по 
этим 11 событиям значение потока высыпающих-
ся электронов окажется больше среднего по 
оставшимся 14 событиям значения потока таких 
электронов. Следует заметить, что в число этих 
14 событий вошли 3 события, во время которых 
протонный канал Д4 отключался. Это события 
25.03. 2019 г., 31.03. 2019 г. и 5.04. 2019 г. Мы под-
считали средние значения потоков, зарегистри-
рованных черенковским счетчиком (СЧ) и двумя 
гейгеровскими счетчиками (СГ1, СГ2), отдельно 
по 11 событиям, в которых были отмечены вы-
бросы, и  по оставшимся 11 событиям (14−3), 
в которых выбросы отмечены не были. Соответ-
ствующие стандартные отклонения мы также 
подсчитали. Результаты приведены в табл. 3.

Из табл. 3 в каждом из трех каналов ГАЛС про-
сматривается тенденция к повышению среднего 
по 11 событиям, в которых наблюдались выбро-
сы, потока по сравнению со средним потоком по 
11 событиям, в которых выбросы не наблюдались. 
Эта тенденция может указывать на присутствие 
среди модулирующих частот помимо сотен герц 
также единиц и десятков килогерц в том или ином 
из 11 выявленных событий, в которых наблюда-
лись выбросы. Из табл. 3 видно также, что стан-
дартные отклонения для двух из трех каналов 
ГАЛС (СГ2 и СЧ) оказались меньше средних зна-
чений, а выяснение причины больших стандарт-
ных отклонений по каналу СГ1 показало, что 
это − следствие колоколообразной формы про-
филя его показаний во время событий в отличие 
от почти прямоугольных профилей показаний 
СЧ и СГ2 (см. рис. 1 [Гинзбург и др., 2023]).

Местоположение известных наземных нагрев-
ных стендов [Streltsov et al., 2018] исключает их 
использование в Океании, где ИСЗ “Метеор-М 
№ 2” зарегистрировал 25 аномальных событий 
высыпаний. В  литературе [Papadopoulos, 2015; 
Esser et al., 2017, 2018; Eliasson and Papadopoulos, 
2017, 2018] сообщалось о целесообразности соз-
дания мобильного нагревного стенда морского 
базирования, в том числе, для проведения иссле-
дований в районе геомагнитного экватора. Такой 
стенд мог бы нагревать слой F2 ионосферы. Диа
магнитный ток на границах зоны нагрева спосо-
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хватить. В  этом последнем варианте площадь 
зоны нагрева стендом в ионосфере оценивается 
величиной ~2500 км2 [Esser et al., 2018].

Осциллирующий диамагнитный ток, протека-
ющий по границам зоны нагрева в cлое F2, гене-
рирует электромагнитные волны на частотах мо-
дуляции, а постоянная составляющая этого диа-
магнитного тока изменяет магнитное поле 
околоземного космического пространства во 
время нагрева ионосферы. Мы смоделировали 
основные черты такого изменения суперпозици-
ей поля центрального земного диполя и поля со-
леноида, расположенного на геомагнитном эква-
торе на высоте 300 км в cлое F2 и ориентирован-
ного вдоль дипольной силовой линии (области, 
где наблюдались события, по-видимому, имеют 
вытянутую вдоль геомагнитных силовых линий 
форму [Гинзбург и др., 2023]). Такой (“вакуум-
ный”) подход уже использовали ранее [Shabansky, 
1965] (при моделировании магнитного поля на 
дневной стороне магнитосферы суперпозицией 
двух диполей) и  [Triskova and Veselovsky, 1992] 
(при моделировании магнитного поля внешней 
гелиосферы суперпозицией диполя и постоянно-
го однородного поля). В нашем случае суперпо-
зиция оправдывается тем, что магнитное поле во 
внутреннем радиационном поясе в спокойных 
геомагнитных условиях практически потенци-
ально [Тверской, 2004]. Поле вне соленоида мы 
рассчитывали, следуя Callaghan and Maslen [1960]. 
Диаметр соленоида мы приняли ~10 км [Streltsov 
et al., 2018], так что длина соленоида ~250 км 
определилась, исходя из оценки площади зоны 
нагрева в ионосфере величиной ~2500 км2 [Esser 
et al., 2018]. Плотность поверхностного диамаг-
нитного тока соленоида мы оценивали из условия 
баланса полного (теплового плюс магнитного) 
давления на границе раздела нагретой и не нагре-
той (фоновой) ионосферной плазмы:
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бен (посредством генерируемого этим осцилли-
рующим током магнитного звука) индуцировать 
вторичные (осциллирующие на той же частоте) 
токи в области E [Papadopoulos et al., 2011a, b; 
Eliasson et al., 2012, 2018; Sharma et al., 2016; 
Vartanyan et al., 2016; Eliasson and Papadopoulos, 
2017]. При работе в районе геомагнитного эква-
тора вторичные осциллирующие токи в Е-обла-
сти индуцируются непосредственно под зоной 
нагрева слоя F2 [Papadopoulos et al., 2011a; Eliasson 
et al., 2012; Wang et al., 2016; Eliasson and 
Papadopoulos, 2016]. Вторичные токи запитывают 
волновод Земля−ионосфера электромагнитными 
волнами на частоте модуляции, а также генери-
руют альвеновские волны той же частоты, кото-
рые выходят во внутренний радиационный 
пояс [Shao et al., 2009; Papadopoulos et al., 2011a, 
b; Eliasson et al., 2012; Wang et al., 2016; Gekelman 
et al., 2019]. Циклотронный резонанс с альвенов-
скими волнами на частотах десятки герц, возни-
кающий при движении протонов внутреннего 
радиационного пояса вдоль геомагнитного поля 
в  направлении зоны нагрева, приведет к  их 
питч-угловой диффузии в  конус потерь [Shao 
et al., 2009]. Возможно, этим резонансом объяс-
няется колоколообразная форма профиля пока-
заний канала СГ1, воспринимающего не только 
электроны с энергией более 0.8 МэВ, но и прото-
ны с энергией более 15 МэВ (табл. 1), которых во 
внутреннем поясе примерно на порядок больше, 
чем протонов с энергией более 25 МэВ, регистри-
руемых в  канале СГ2. Высыпание при баунс-
колебаниях протонов может быть спровоциро-
вано плавучим нагревным стендом, если среди 
модулирующих присутствуют и частоты в десят-
ки герц. 

Инженерные проработки макетов специали-
зированных антенной системы [Esser et al., 2017, 
2018] и электрической цепи отбора мощности от 
источника энергии к антенной системе [Narayan, 
2020] демонстрируют, что мобильный нагревный 
стенд вполне возможно разместить на трех сталь-
ных морских баржах размером 120×32.2 м каждая. 
В крайнем случае, даже двух таких барж могло бы 

Таблица 3. Потоки в каналах прибора ГАЛС

Канал Средний по 11 событиям поток (1/см2 с стер) 
(выбросы наблюдались)

Средний по 11 событиям поток (1/см2 с стер) 
(выбросы не наблюдались)

СГ1 53.58 ± 99.24 14.20 ± 33.25

СГ2 2.77 ± 1.78 2.06 ± 0.82

СЧ 0.26 ± 0.086 0.23 ± 0.07
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Здесь k – постоянная Больцмана; (niф, neф, Tiф, 
Teф, Bф) – ионная и электронная концентрации, 
ионная и электронная температуры, напряжен-
ность магнитного поля на границе раздела со сто-
роны фоновой плазмы; (niн, neн, Tiн, Teн, Bн) − ион-
ная и электронная концентрации, ионная и элек-
тронная температуры, напряженность 
магнитного поля на границе раздела со стороны 
нагретой плазмы. Считаем ионосферную плазму 
квазинейтральной; для оценок примем, что при 
нагреве электронная концентрация увеличивает-
ся в среднем на 50%, электронная температура – 
на ~30%, а ионная температура практически не 
изменяется [Streltsov et al., 2018].
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Из соотношений (2) и (3) с учетом Bф+Bн≈2Bф 
получаем
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Тогда плотность поверхностного тока на гра-
нице раздела нагретой и не нагретой областей (i):
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Критической частоте слоя F2 (5−7) МГц в Океа
нии в утренние часы местного времени (~8 утра) 
соответствует neф = 4.5·105 см-3 при foF2 = 6 МГц. 
Принимая Teф = 2500 K, Tiф = 1000 K, Bф = 0.25 Гс, 
из (4) находим i ≈ 0.075 А/м2. Тогда полный ток 
на единицу длины соленоида в 1 метр составляет 
2 π 750 А/м. На рис. 3 приведены результаты рас-
чета зависимости магнитного поля от магнитной 
широты для суперпозиции диполя и  соленои-
да (сплошная линия) и диполя (пунктирная ли-
ния) для L = 1.1. Видно, что наличие соленои-
да (моделирующего магнитный эффект от плаву-
чего нагревного стенда) изменяет магнитное поле 
на малых L. Поле повышается в пределах ~3° маг-
нитной широты от экватора − места дислокации 
стенда (в  рассматриваемом модельном случае 
стенд помещался на магнитном экваторе), а далее 
оно оказывается меньше дипольного вплоть до 
широты ~10°. 

При регистрации событий речь идет о появле-
нии электронов в точке силовой линии, удален-
ной от вершины этой линии. В отсутствие элек-
тромагнитной волны частицы с условно малень-
кими баунс-амплитудами группируются вблизи 
вершины силовой линии. Воздействие волны на 
эти первоначально удаленные от ИСЗ “Мете-

ор-М № 2” частицы приводит к изотропизации 
их питч-углового распределения, или, что то же 
самое, к  увеличению баунс-амплитуды, в  том 
числе и такому, что частицы могут опускаться до 
высоты орбиты ИСЗ “Метеор-М № 2” и ниже. 
Часть из них способна достичь атмосферы – это 
высыпающиеся частицы. Те же, которые не по-
падут в конус потерь и не станут высыпающими-
ся, окажутся квази-захваченными, регистрируе-
мыми на высоте ~ 800 км в зоне работы передат-
чика. То есть датчики ГАЛС регистрируют и, 
вообще говоря, не различают две популяции 
электронов. Во-первых, это квази-захваченные 
электроны (с такими питч-углами, что их зер-
кальные точки располагаются ниже орбиты ИСЗ 
“Метеор-М № 2”), которые после отражения 
возвращаются назад в  радиационный пояс. 
Во-вторых, это высыпающиеся электроны 
с питч-углами в конусе потерь, которые позво-
ляют им высыпаться из радиационного пояса 
в  атмосферу. Осциллирующий диамагнитный 
ток, протекающий по границам зоны нагрева 
в слое F2, приводит к высыпаниям релятивист-
ских электронов за счет циклотронного резонан-
са на частотах модуляции. Это работает на уве-
личение числа регистрируемых высыпающихся 
электронов дополнительно к тем, что высыпают-
ся при циклотронном резонансе на субгармони-
ках несущей частоты (5−7 МГц). С другой сторо-
ны, постоянная составляющая ионосферного 
диамагнитного тока изменяет магнитное поле на 
малых L в районе дислокации стенда. Изменения 
магнитного поля поднимают или опускают вы-
соту зеркальных точек по отношению к орбите 
ИСЗ “Метеор-М № 2”. Изменения высоты зер-
кальных точек уменьшают или увеличивают чис-
ло регистрируемых датчиками ГАЛС квази-
захваченных электронов. Влияние изменения 
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Рис. 3. Результаты модельного расчета зависимости 
магнитного поля от магнитной широты для суперпо-
зиции диполя и соленоида (сплошная линия) и дипо-
ля (пунктирная линия). В рассматриваемом модель-
ном случае стенд помещался на магнитном экваторе.
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магнитного поля на показания датчиков ГАЛС 
иллюстрирует событие 9.07.2017 г. (рис. 4).

Видно, что сразу после типичного резкого (дли-
тельностью несколько десятков секунд) всплеска 
показаний всех датчиков ГАЛС в начале события, 
связанного с увеличением числа регистрируемых 
высыпающихся электронов, наблюдается провал 
с последующим постепенным возрастанием ско-
рости счета датчиков. Провал можно интерпрети-
ровать как дефицит числа регистрируемых ква-
зи-захваченных электронов, связанный с локаль-
ным повышением (по сравнению с  диполем) 
магнитного поля вблизи расположения стенда за 
счет вклада постоянной составляющей осцилли-
рующего диамагнитного тока, протекающего по 
границам зоны нагрева. Дальнейшее увеличение 
скорости счета всех датчиков, в свою очередь, 
может указывать на понижение общего магнит-
ного поля с удалением от стенда (см. рис. 3) и, со-
ответственно, увеличение числа регистрируемых 
квази-захваченных электронов. Все это происхо-
дит на фоне повышенного числа высыпающихся 
электронов в событии.

4. ЗАКЛЮЧЕНИЕ
Примерно половина (11) из 25 аномальных вы-

сыпаний электронов, зарегистрированных с бор-
та ИСЗ “Метеор-М № 2” в 2014−2022 гг. в Океа-
нии в низких широтах в утренние часы местного 
времени в  спокойных геомагнитных условиях 
в энергиях от ~100 кэВ до нескольких МэВ, со-
провождалась индуцированными высыпаниями 
протонов с энергиями 20−45 МэВ. Если причина 
явления – резонанс на циклотронной частоте 
протонов (~400 Гц), то (поскольку в  утренние 
часы местного времени прохождение в космос 
наземных сигналов с частотами ~400 Гц блокиру-
ется ионосферой) единственный тип наземного 
и/или судового передатчика, способный местным 
утром обеспечить присутствие низкочастотного 
электромагнитного излучения во внутреннем ра-
диационном поясе − это нагревный стенд. Источ-
ником радиоволн с частотой ~400 Гц во внутрен-
нем радиационном поясе является диамагнитный 
ток, развивающийся в  слое F2 ионосферы по 
границам зоны нагрева, сила которого осцилли-
рует на частоте модуляции ~400 Гц. В циклотрон-
ный резонанс со стимулированным низкочастот-
ным излучением могут попасть и релятивистские 
электроны внутреннего радиационного пояса 
при широком спектре частот модуляции. В част-
ности, для попадания в циклотронный резонанс 
электронов с энергией 8 МэВ и выше (черенков-
ский счетчик СЧ) частота модуляции должна со-
ставлять ~3 кГц и ниже, для электронов с энерги-
ей 2.1 МэВ и выше (гейгеровский счетчик СГ2) 
~30 кГц и  ниже, и  для электронов с  энергией 
0.8  МэВ и  выше (гейгеровский счетчик СГ1) 
~125 кГц и ниже. Постоянная составляющая ос-
циллирующего диамагнитного тока, протекаю-
щего по границам зоны нагрева в слое F2, может 
изменять магнитное поле на малых L во время 
нагрева ионосферы, что подтверждают модель-
ные расчеты; это, в свою очередь, отразится на 
временных профилях показаний прибора ГАЛС. 

В литературе [Papadopoulos, 2015; Eliasson and 
Papadopoulos, 2016] сообщалось о целесообраз-
ности создания мобильного нагревного стенда 
морского базирования, в том числе, для прове-
дения исследований в  районе геомагнитного 
экватора. Инженерные проработки макетов 
специализированных антенной системы [Esser 
et al., 2017, 2018] и электрической цепи отбора 
мощности от источника энергии к антенной си-
стеме [Narayan, 2020] демонстрируют, что мо-
бильный нагревый стенд вполне возможно раз-
местить на трех стальных морских баржах раз-
мером 120×32.2 м каждая.

Рис. 4. Показания датчиков ГАЛС для события 
9.07.2017 г. По оси абсцисс – географическая широта 
в градусах, по оси ординат – интенсивности. Магнит-
ный экватор для рассматриваемого события располо-
жен на ~6o N.
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Стало быть, аномальные электронные и про-
тонные высыпания из внутреннего радиацион-
ного пояса, зарегистрированные с  борта ИСЗ 
“Метеор-М №2” в 2014−2022 гг. в Океании в низ-
ких широтах в утренние часы местного времени 
в спокойных геомагнитных условиях, допускают 
интерпретацию, согласно которой они представ-
ляют собой побочные проявления ионосферных 
экспериментов с использованием плавучего на-
гревного стенда. 
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Detected were induced proton precipitations from the inner radiation belt went with almost a half (11) of 
25 anomalous electron events registered onboard “Meteor-M №2” satellite in 2014−2022 in Oceania at low 
latitudes in the morning hours of local time under quiet geomagnetic conditions. It is surmised that such 
proton precipitations could be a manifestation of cyclotron resonance between protons and low frequency 
electromagnetic waves stimulated by a mobile ionospheric heater. Observed effects in anomalous electron 
events, which could be interpreted in the framework of a mobile ionospheric heater concept, are also 
discussed.
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