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Представлены результаты сравнительного анализа солнечного протонного события 30.03.2022 г., 
имеющего необычный временной профиль потоков солнечных протонов, с предыдущим и после-
дующим солнечными протонными событиями: 28.03.2022 г. и 02.04.2022 г. Возрастания потоков 
энергичных протонов в  межпланетном и  в околоземном пространстве ассоциируются с  после-
довательными солнечными вспышками рентгеновских баллов M4.0, X1.3 и  M3.9 и  тремя коро-
нальными выбросами массы типа гало. Работа сделана по экспериментальным данным, полу-
ченным с космических аппаратов, расположенных в межпланетном пространстве (ACE, WIND, 
STEREO A, DSCOVR), на круговой полярной орбите на высоте 850 км (Метеор-М2) и на геоста-
ционарной орбите (GOES-16, Электро-Л2). Предложено объяснение особенностей профиля по-
тока энергичных протонов в солнечном протонном событии 30.03.2022 г.: протоны, ускоренные 
во вспышке 30.03.2022 г., были частично экранированы межпланетным корональным выбросом 
массы, источником которого стали взрывные процессы на Солнце 28.03.2022 г.; поздняя регистра-
ция максимальных потоков протонов, одновременная для частиц разных энергий, обусловлена 
приходом потоков частиц внутри межпланетного коронального выброса массы. Пространствен-
ное распределение солнечных протонов на околоземной орбите было подобным распределению 
в точке Лагранжа L1, но с запаздыванием ~50 мин. 
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1. ВВЕДЕНИЕ
Солнечные протонные события (СПС), реги-

стрируемые в околоземном пространстве, явля-
ются результатом многих физических процессов, 
происходящих в солнечной короне, в межпланет-
ной среде и даже в магнитосфере Земли. Стати-
стические закономерности, типичные и экстре-
мальные характеристики СПС могут быть опре-
делены с  помощью каталогов СПС, которые 

содержат многолетний однородный ряд экспери-
ментальных данных (например, [Логачев и др., 
2022]). Но только результаты исследования кон-
кретного события рисуют истинную картину яв-
лений, происходящих на Солнце и в межпланет-
ной среде. Несмотря на многолетние исследова-
ния нет однозначного решения вопроса даже об 
источнике энергичных солнечных частиц. После 
открытия солнечных космических лучей именно 
вспышки считались их источником [Meyer et al., 
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1956]. Результаты исследования корональных вы-
бросов массы (КВМ) привели к пониманию, что 
возможно ускорение частиц и на ударных волнах, 
предваряющих КВМ [Kahler et al., 1984; Reames, 
1995]. В  настоящее время предполагается, что 
солнечные энергичные частицы ускоряются 
и в области солнечной вспышки, и на ударных 
волнах, связанных с КВМ (например, [Reames, 
2013, 2017; Bazilevskaya, 2017; Klein and Dalla, 
2017]). Ускорение на ударных волнах, сопрово-
ждающих КВМ, может происходить как во время 
зарождения КВМ на Солнце, так и в межпланет-
ной среде (например, [Reames, 2013; Базилевская 
и др., 2023]). В то же время наблюдалось очень 
небольшое количество СПС, которые были ассо-
циированы только с КВМ без солнечной вспыш-
ки [Marqué et al., 2006]. Созданы модели распро-
странения солнечных энергичных частиц, учиты-
вающие ускорение частиц в  короне Солнца 
и в межпланетной среде [Frassati et al., 2022; Zhang 
et al., 2023].

Главным фактором, определяющим динами-
ческие процессы в межпланетной среде, является 
межпланетное магнитное поле [Паркер, 1965]. 
Магнитные неоднородности, вмороженные 
в плазму солнечного ветра, влияют на движение 
солнечных энергичных частиц и обусловливают 
модуляцию их потоков с характерными времена-
ми от нескольких минут до нескольких суток. 
В частности, магнитные структуры солнечного 
ветра могут образовывать ловушки частиц, захва-
тывая их в замкнутых областях пространства. 

Эмпирическая “отражательная модель” предпо-
лагает захват и перенос частиц в полупрозрачных 
магнитных ловушках, образованных силовыми ли-
ниями межпланетного магнитного поля (ММП), 
вытянутыми от Солнца [Любимов, 1988; Любимов 
и Григоренко, 2007]. В работе [Дайбог и др., 2017] 
существование вариаций потоков юпитерианских 
электронов вблизи Земли объясняется, в частно-
сти, пребыванием электронов в магнитных ло-
вушках, имеющих форму замкнутых магнитных 
структур, возникающих при взаимодействии раз-
носкоростных потоков солнечного ветра (Stream 
Interaction Region, SIR). Если разноскоростные по-
токи существуют длительное время, вращаясь вме-
сте с Солнцем, то возникают коротирующие обла-
сти взаимодействия (Corotating Interaction Regions, 
CIR), которые могут оказывать влияние на дина-
мику солнечных энергичных частиц (напри-
мер, [Richardson, 2004, 2018]). В работах [Reames, 
2013, 2023] описаны области пространства за рас-
пространяющимся ударным фронтом, содержа-
щие захваченные частицы. В работе [Vlasova et al., 
2024] для объяснения длительного наблюдения 

в  гелиосфере потоков солнечных энергичных 
протонов предложено существование замкнутой 
области-ловушки, сформированной двумя меж-
планетными корональными выбросами массы 
(МКВМ) и областями взаимодействия высоко-
скоростных и  медленных потоков солнечного 
ветра.

Известно, что МКВМ оказывают воздействие 
на поток солнечных энергичных частиц. По дан-
ным КА Explorer-12 было обнаружено возраста-
ние потоков энергичных частиц, названных бы-
стрыми штормовыми частицами (Energetic Storm 
Particles), перед “плазменным облаком”, вызвав-
шим магнитную бурю на Земле [Bryant et al., 1962]. 
В работе сделан вывод о том, что это ‒ солнечные 
протоны, захваченные внутрь плазменного обла-
ка. Результаты исследования прихода солнечных 
протонов на КА SOHO, когда КА находился в маг-
нитном облаке, свидетельствуют, что магнитное 
поле в структуре КВМ обеспечивает “магистраль-
ный” путь для распространения потоков прото-
нов [Torsti et al., 2004]. Использование солнечных 
энергичных частиц в качестве инструмента для 
исследования топологии магнитного поля двух 
магнитных облаков показало, что в одном случае 
по отражению частиц нужно представить магнит-
ную петлю, как бутылку, соединенную с Солнцем, 
во втором случае отражение происходит от маг-
нитного зеркала, образованного полем сжатия за 
ударной волной, то есть это − топология откры-
тых силовых линий [Tan et  al., 2014]. В  рабо-
те [Shen et al., 2008] показано, что поток протонов 
с энергией ≥10 МэВ в событии 05.11.2011 был са-
мым большим в 23 цикле солнечной активности 
вследствие того, что частицы попали в структуру, 
состоящую из ударной волны и магнитного обла-
ка. В то же время для события 14.07.2000 (GLE 59) 
на профиле потоков протонов с энергией от ∼1 до 
∼100 МэВ наблюдается двух-этапное быстрое па-
дение интенсивности, связанное с областью сжа-
тия и магнитным облаком [Wu and Quin, 2020]. 
В работе [Cane et al., 1988] представлены резуль-
таты исследования влияния ударной волны, 
предшествующего КВМ, который находится на 
пути распространения частиц в межпланетной 
среде, на временные профили солнечных прото-
нов в зависимости от гелиодолготы их источника. 
В работе [Kahler and Reames, 1991] делается вы-
вод, что магнитные облака почти прозрачны для 
солнечных частиц (электронов с E = 0.2−2 МэВ, 
протонов с Е = 22−27 МэВ, КА ISEE-3) и поля 
магнитных облаков не замкнуты. В работе [Masson 
et al., 2012] на основе результатов исследования 
событий GLE по данным нейтронных мониторов 
показано, что время прибытия первых частиц вы-
соких энергий на Землю во многом определяется 
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типом ММП, в котором частицы распространя-
ются. Начальное время прихода соответствует 
ожидаемому в модели Паркера при медленном 
солнечном ветре и значительно больше в гелиос-
ферных структурах, таких как МКВМ. В рабо-
те [Kocharov et al., 2005] делается вывод, что струк-
тура КВМ, подобная магнитной ловушке, значи-
тельно изменяет профиль интенсивности-време-
ни высокоэнергичных частиц, наблюдавшихся на 
1 а.е. Спад потока частиц после максимума про-
исходит медленнее, чем при моделировании по 
магнитному полю в виде спирали Архимеда, и мо-
жет быть аппроксимирован экспоненциальной 
функцией.

Цель данной работы – объяснить причины 
формирования сложного временного профиля 
потоков солнечных энергичных протонов 
30−31.03.2022 г., отличающегося от соответству-
ющих профилей в предыдущем и последующем 
солнечных протонных событиях 28.03.2022 г. 
и 01.04.2022 г., основываясь на результатах ана-
лиза солнечных источников энергичных частиц 
и высокоскоростных потоков солнечного ветра, 
а также условий в межпланетной среде, в которых 
солнечные протоны распространялись от Солнца 
до орбиты Земли.

2. ИСТОЧНИКИ ЭКСПЕРИМЕНТАЛЬНЫХ 
ДАННЫХ

Исследование временных профилей потоков 
солнечных протонов 28.03.2022 г., 30.03.2022 г. 
и 02.04.2022 г. выполнено на основе эксперимен-
тальных данных, полученных с космических ап-
паратов (КА), расположенных в межпланетном 
пространстве и в магнитосфере Земли (табл. 1). 

КА STEREO A в  исследуемый пери-
од (30.03.2022 г.) был расположен на расстоянии 
0.97 а.е. от Солнца, а область на Солнце, связанная 
с КА силовыми линиями магнитного поля при ско-
рости солнечного ветра 400 км/с, находится при-
мерно на 35.3° восточнее, чем соответствующая 
область для Земли [Gieseler et al., 2022; https://solar-
mach.github.io/]. 

Электронные ресурсы, из которых получена 
необходимая для исследования информация:

– по солнечным вспышкам и корональным 
дырам (https://www.solarmonitor.org/);

–  по корональным выбросам массы с короно-
графа LASCO/C2 на КА SOHO (https://cdaw.gsfc.
nasa.gov/CME_list/);

– по положению диммингов для определения 
гелиокоординат КВМ (https://www.sidc.be/
solardemon/);

Таблица 1. Источники информации о потоках солнечных энергичных протонов и параметрах солнечного ветра 
и межпланетного магнитного поля

КА Орбита Энергия протонов,
МэВ

STEREO A Гелиоцентрическая орбита, близкая к орбите Земли 40−60

ACE Точка либрации L1 −  
1.5 млн км от Земли к Солнцу

>10 
>30

WIND Точка либрации L1 −  
1.5 млн км от Земли к Солнцу 28−72 

DSCOVR Точка либрации L1 − 
1.5 млн км от Земли к Солнцу −

Метеор-М2 Круговая, солнечно-синхронная, утренняя. Наклонение 98.8°, 
период обращения – 101.4 мин 10−160

GOES-16
Геостационарная орбита:  
высота ∼36000 км; наклонение ∼0°;  
долгота − 75.2° W 

>5
>10
>30
>60
>100
>500

Электро-Л2 Геостационарная орбита: высота ∼36000 км; наклонение ∼0°; 
долгота − 14.5° W

9−20
20−40

https://solar-mach.github.io/
https://solar-mach.github.io/
https://www.solarmonitor.org/
https://cdaw.gsfc.nasa.gov/CME_list/
https://cdaw.gsfc.nasa.gov/CME_list/
https://www.sidc.be/solardemon/
https://www.sidc.be/solardemon/


28 Власова и др.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ       том 65       № 1       2025

– по изображениям Солнца в различных длинах 
волн с КА SDO (https://www.spaceweatherlive.com; 
https://www.sidc.be/solardemon/);

– по синоптическим картам Солнца (https://
gong.nso.edu/);

– по времени прихода ударных волн КВМ 
в околоземное космическое пространство (ОКП) 
(https://zenodo.org/record/7991430);

– по результатам моделирования прихода 
МКВМ в околоземное пространство службы про-
гноза солнечного ветра и КВМ ММИ им. Эйлера 
СПбГУ и ЛЭТИ (https://solarwind.entroforce.ru/);

– по солнечному ветру и межпланетному маг-
нитному полю с КА ACE и КА DSCOVR (https://
swx.sinp.msu.ru/);

– по потокам солнечных энергичных прото-
нов с КА STEREO A и КА WIND (https://cdaweb.
gsfc.nasa.gov/), с КА ACE и ИСЗ GOES-16, Мете-
ор-М2, Электро-Л2 (https://swx.sinp.msu.ru/).

Большинство рисунков данной статьи создано 
на сайте центра данных оперативного космическо-
го мониторинга (ЦДОКМ) НИИЯФ МГУ, кото-
рый обеспечивает доступ к оперативным данным 
космических экспериментов и моделям оператив-
ного прогнозирования явлений космической по-
годы. На сайте ЦДОКМ в разделе “Космическая 
погода” (https://swx.sinp.msu.ru/) собраны данные, 
необходимые для оценки и анализа радиационной 
обстановки не только в околоземном космиче-
ском пространстве, но и в межпланетной среде. 
Там же представлены электронные интерактивные 
версии каталогов солнечных протонных событий 
24 и 25 циклов солнечной активности и ссылки на 
печатные варианты каталогов СПС 20–24 циклов 
солнечной активности (https://swx.sinp.msu.ru/
apps/sep_events_cat/index.php?gcm=1&lang=ru).

Усовершенствованные графические приложе-
ния дают возможность проводить сравнительный 
анализ как экспериментальных данных, так и ре-
зультатов моделирования.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ  
РЕЗУЛЬТАТЫ

Особенностью обсуждаемого солнечного про-
тонного события 30.03.2022 г. является то, что вре-
менные профили потоков частиц имеют более 
сложную форму по сравнению с профилями пред-
шествующего (28.03.2022 г.) и  последующе-
го (02.04.2022 г.) событий (рис. 1б). СПС 28.03.2022 г., 
30.03.2022 г. и 02.04.2022 г. ассоциируются с солнеч-
ными вспышками рентгеновских баллов (рис. 1а) 
M4.0 (W09), X1.3 (W31) и M3.9 (W68), соответ-
ственно (в скобках указана гелиодолгота вспыш-

ки). Вспышки 28.03.2022 г. и 30.03.2022 г. прои-
зошли в  одной активной области. Все три 
вспышки сопровождались КВМ типа гало. Усло-
вия в межпланетной среде при распространении 
частиц трех СПС были различны (рис. 1в, 1г). 
Каждое событие сопровождалось высокоскорост-
ным потоком солнечного ветра. В последней де-
каде марта 2022 года через центральный меридиан 
Солнца проходили две корональные дыры (КД): 
22−24.03.2022 г. − приэкваториальная довольно 
большой площади; 29−31.03.2022 г. − среднеши-
ротная небольшой площади. Высокоскоростные 
потоки солнечного ветра, через которые прошла 
Земля 27−28.03.2022 г. и 02.04.2022 г. (рис. 1в), мог-
ли иметь своими источниками именно эти КД, так 
как скорость потоков составляла ∼550 км/c, что 
соответствует времени распространения от Солн-
ца до Земли − ∼3 дня. 28.03.2022 г. на Солнце в ак-
тивной области АО12975, находившейся вблизи 
центра диска Солнца, с разницей во времени око-
ло 8 часов произошли две вспышки баллов М4.0 
и М1.0, сопровождавшиеся корональными вы-
бросами масс типа “гало”. С первой из вспышек 
ассоциируется СПС 28.03.2022 г., после второй 
вспышки дополнительного роста потока солнеч-
ных протонов зарегистрировано не было. Взаи-
модействие двух КВМ привело к образованию 
МКВМ, распространяющегося в сторону Земли. 
Приход ударной волны, связанной с этим МКВМ, 
был зафиксирован 31.03.2022 г. в 01:44 UT в точке 
L1 и в 02:24 UT на орбите Земли (https://zenodo.
org/record/7991430).

Можно видеть, что во время СПС 30.03.2022 г. 
наблюдалось наиболее сильное ММП, а также 
длительное большое отрицательное значение 
Bx-компоненты ММП (рис. 1г). Временные про-
фили потоков солнечных протонов, представлен-
ные на рис. 1б, построены по измерениям внутри 
магнитосферы Земли на ИСЗ GOES-16. Подоб-
ная форма всех трех профилей потоков энергич-
ных протонов наблюдалась и в точке Лагранжа L1 
на КА ACE (рис. 2а), и в области полярных шапок 
Земли на открытых силовых линиях магнитного 
поля Земли на ИСЗ Метеор-М2 в северной и юж-
ной полярных шапках (рис. 2б), и на геостацио-
нарной орбите на замкнутых силовых линиях на 
ИСЗ Электро-Л2 (рис. 2в). Следовательно, можно 
сказать, что особенности профилей потоков ча-
стиц 30.03.2022 г. не связаны с проникновением 
частиц в магнитосферу Земли.

Для более точной оценки отличий временно-
го профиля потоков солнечных протонов 
30−31.03.2022 г. от профилей в СПС 28.03.2022 г. 
и 02.04.2022 г. на рис. 3 представлены в едином 
масштабе профили потоков протонов по данным 

https://www.spaceweatherlive.com
https://www.sidc.be/solardemon/
https://gong.nso.edu/
https://gong.nso.edu/
https://zenodo.org/record/7991430
https://solarwind.entroforce.ru/
https://swx.sinp.msu.ru/
https://swx.sinp.msu.ru/
https://cdaweb.gsfc.nasa.gov/
https://cdaweb.gsfc.nasa.gov/
https://swx.sinp.msu.ru/
https://swx.sinp.msu.ru/
https://swx.sinp.msu.ru/apps/sep_events_cat/index.php?gcm=1&lang=ru
https://swx.sinp.msu.ru/apps/sep_events_cat/index.php?gcm=1&lang=ru
https://zenodo.org/record/7991430
https://zenodo.org/record/7991430
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Рис. 1. Временные профили 27.03.2022−05.04.2022 г.: (а) − плотности потока рентгеновского излучения Солнца с дли-
ной волны 0.1−0.8 нм и (б) − потоков солнечных протонов по данным ИСЗ GOES-16, (в) − скорости и плотности 
солнечного ветра и (г) − модуля и Bx-компоненты ММП по данным КА DSCOVR. 

ИСЗ GOES-16 в течение первых суток после сол-
нечных вспышек, с  которыми ассоциируются 
СПС. Можно выделить несколько особенностей 
профиля 30.03.2022 г. (рис. 3б):

– начало возрастания потоков частиц с энер-
гией >5 МэВ и >10 МэВ происходит раньше вре-
мени возрастания потоков более энергичных ча-
стиц (E >100 МэВ), что свидетельствует против 
их происхождения из одного источника;

– интервал времени между началом вспышки 
и  приходом частиц с  E > 100 МэВ для СПС 
30.03.2022 г. составляет 109 мин, что значительно 
больше, чем для СПС 28.03.2022 г. (47 мин) и СПС 
02.04.2022 г. (46 мин), и не коррелирует с рассто-
янием между долготой вспышки и долготой сое-
динения Земли;

– интервал времени между началом вспышки 
и наблюдением максимальных за событие значе-

ний потоков протонов с E > 10 МэВ для СПС 
30.03.2022 г. (∼12.6 час) существенно больше, 
чем  для СПС 28.03.2022 г. (∼4 час) и  СПС 
02.04.2022 г. (∼3 час); время наблюдения макси-
мума в СПС 28.03.2022 г. и 02.04.2022 г. зависит 
от энергии протонов, в СПС 30.03.2022 г. макси-
мумы потоков протонов разных энергий наблю-
дались одновременно;

– максимальный поток протонов, особенно 
в области бóльших энергий, в СПС 30.03.2022 г. 
существенно меньше, чем в двух других событи-
ях, несмотря на то, что балл рентгеновской 
вспышки 30.03.2022 г. наибольший: X1.3 по срав-
нению с M4.0 и M3.9;

– форма профиля потока частиц до максиму-
ма существенно отличается для события 
30.03.2022 г.
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генерации и ускорения частиц на Солнце и рас-
пространения в межпланетной среде.

4.1. Условия на Солнце
Был проведен анализ солнечных источников 

потоков частиц и возмущенного солнечного ве-
тра за исследуемый период времени по изобра-
жениям солнечного диска в ультрафиолетовом 
свете во времена, предположительно соответству-
ющие наблюдению КВМ в нижней короне Солн-
ца (https://www.spaceweatherlive.com/), и по изо-
бражениям КВМ в  коронографе (https://www.
s i d c . b e / c a c t u s / c a t a l o g / L A S C O / 2 _ 5 _ 0 /
qkl/2022/03/). Кроме этого изучались разностные 
изображения (получены последовательным вы-
читанием кадров из первого кадра для каждого 
наблюдения) на длине волны 21.1 нм (https://
www.sidc.be/solardemon/), так называемые “коро-

На рис. 4 показаны СПС 28.03.2022 и 30.03.2022 
по наблюдениям на КА WIND и на КА STEREO A, 
который в конце марта 2022 г. находился на рас-
стоянии 0.97 а.е. от Солнца и на 33.5° восточнее 
Земли. Временные профили потоков солнечных 
протонов, измеренные в точке либрации L1 на 
КА WIND и на КА STEREO A практически со-
впадают 28.03.2022 г. В событии 30.03.2022 г. про-
филь по данным КА STEREO A мало отличается 
от 28.03.2022 г., в то же время на КА WIND в точ-
ке L1 наблюдается существенное различие про-
филей 28.03.2022 г. и 30.03.2022 г.

4. ОБСУЖДЕНИЕ
Сложный временной профиль потоков сол-

нечных энергичных протонов 30-31.03.2022 г. мо-
жет быть обусловлен особенностями процессов 
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Рис. 2. Временные профили потоков солнечных протонов 27.03.2022−05.04.2022 г.: (а) − с E > 10 МэВ и E > 30 МэВ 
по данным КА ACE; (б) − с E = 10‒160 МэВ по данным ИСЗ Метеор-М2; (в) − с E = 9−20 МэВ и E = 20−40 МэВ по 
данным ИСЗ Электро-Л2.

https://www.spaceweatherlive.com/
https://www.sidc.be/cactus/catalog/LASCO/2_5_0/qkl/2022/03/
https://www.sidc.be/cactus/catalog/LASCO/2_5_0/qkl/2022/03/
https://www.sidc.be/cactus/catalog/LASCO/2_5_0/qkl/2022/03/
https://www.sidc.be/solardemon/
https://www.sidc.be/solardemon/
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нальные димминги” − более темные участки на 
изображении, обусловленные флуктуациями 
плотности в солнечной короне (например, [Reinard 
and Biesecker, 2008]). Корональные димминги мо-
гут быть связаны, в том числе, с выходом КВМ из 
короны. Результаты анализа показали, что распо-
ложение диммингов соответствует расположению 
вспышек и согласуется с направлением распро-
странения КВМ, наблюдаемым в коронографе. 
Это говорит о том, что вспышки действительно 
сопровождались наблюдаемыми КВМ и процессы 
локализовались приблизительно в одной области 
Солнца, а также позволяет определить временные 
и пространственные параметры эволюции КВМ 
на ранних стадиях.

В табл. 2 представлены параметры солнечных 
вспышек и корональных выбросов массы, актив-

ные области (АО) на Солнце и расчетные вели-
чины, полученные по изображениям Солнца и по 
средней скорости солнечного ветра во время на-
блюдения СПС.

Во время ранней эволюции КВМ могут повли-
ять на корональное распространение солнечных 
протонов (например, [Zhang et al., 2023]). Мы 
сравнили характеристики соответствующих дим-
мингов, чтобы проверить, могли ли различия 
СПС, наблюдаемые 28.03.2022 г., 30.03.2022 г. 
и 02.04.2022 г., быть объяснены отличием распро-
странения протонов в  солнечной короне. Мы 
оценили разницу во времени между вспышкой 
(по данным рентгеновского излучения) и нача-
лом расширения КВМ (по данным разностных 
изображений Солнца). В случае СПС 30.03.2022 г. 
это наименьшее время: 9 минут по сравнению 
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Рис. 3. Временные профили потоков протонов по данным ИСЗ GOES-16: (а) − с 11:00 UT 28.03.2022 г. до 11:00 UT 
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с 22 и 19 минутами. Параметры трех КВМ, полу-
ченные по данным коронографа, различаются 
ненамного (табл. 2), хотя КВМ 30.03.2022 г. менее 
быстрый, а его позиционный угол наибольший. 

По величине средней скорости солнечного ветра 
во время прихода первых солнечных энергичных 
протонов в околоземное пространство рассчита-
на долгота области на Солнце, связанной с Зем-
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лей силовыми линиями межпланетного магнит-
ного поля. Различие между полученной долготой 
и долготой вспышки соответствует угловому рас-
стоянию коронального распространения прото-
нов. Для СПС 30.03.2022 г. оно практически 
наименьшее. Результаты анализа, представлен-
ные в табл. 2, показывают, что во всех трех случа-
ях разница между долготой источника и геоэф-
фективной долготой не может обеспечить наблю-
даемое различие во времени регистрации СПС 
у орбиты Земли. Также и скорости КВМ, опреде-
ленные в  коронографе, не свидетельствуют 
о принципиальных отличиях события 30.03.2022 г. 
от остальных. Если принять скорость корональ-
ного расширения ∼1000 км/с, то время корональ-
ного распространения от точки начала возмуще-
ния до геоэффективной долготы будет равно 8, 
6  и  5 мин для трех последовательных рас
сматриваемых событий. Таким образом, особен-
ности временного профиля потоков частиц 

30.03.2022 г. не были связаны с распространением 
частиц в короне Солнца.

Анализ синоптических карт Солнца (https://
gong.nso.edu/) показал, что 28.03.2022 г. вспышка 
и точка соединения с КА STEREO A находились 
в  области отрицательного магнитного поля, 
а точка соединения с Землей (с точкой либра-
ции L1) – в области положительного поля и от-
делена от вспышки линией раздела полярностей, 
но характеры временных профилей потоков ча-
стиц на КА STEREO A и  в точке L1 совпада-
ют (рис. 4а). 

В событии 30.03.2022 г. относительное распо-
ложение вспышки, КА STEREO A и Земли изме-
нилось мало, тогда как профили начальной фазы 
возрастания потоков протонов по данным 
КА STEREO A и КА WIND различаются очень 
существенно. Следовательно, граница раздела 
полярностей не оказала влияния на корональное 
распространение протонов в событии 30.03.2022 г. 

Таблица 2. Параметры солнечных вспышек и корональных выбросов массы, активные области (АО) на Солнце 
и расчетные величины

Вспышки: дата,
время начала (UT)

28.03.2022 г.
10:58

28.03.2022 г.
19:08

30.03.2022 г.
17:21

02.04.2022 г.
12:56

Координаты вспышек,  
балл,
АО

N12W09
M4.0
12975

N14W07
M1.0
12975

N13W31  
X1.3

12975

N12W68
M3.9
12976

Данные по КВМ *
N14W04

11:20
22 мин

N14W12 N13W32
17:30
9 мин

N15W69
13:15

19 мин

КВМ: время появления в поле зрения 
коронографа (UT) 12:00 20:24 18:00 13:36

КВМ: скорость и параметры раствора**
702 км/с

360°
127°

905 км/с
360°
299°

641 км/с
360°
298°

1433 км/с
360°
263°

Vsw
Wϕ
∆ϕ***

520 км/с
W43
34°

−
−
−

400 км/с
W58
27°

550 км/с
W42
–26°

КВМ: скорость и время коронального 
расширения

1000 км/с
8 мин

−
−

1000 км/с
6 мин

1000 км/с
5 мин

Время прихода протонов с E > 100 МэВ (UT), 
∆Т от вспышки

11:45

47 мин

−

−

19:10

109 мин

13:40

мин

Примечание.* Координаты КВМ (димминга), время начала расширения КВМ в короне Солнца (UT) и ∆Т от начал вспыш-
ки до расширения КВМ.
** Скорость КВМ по коронографу, угловой раствор (угловая ширина) КВМ вблизи Солнца, позиционный угол самого 
быстрого сегмента переднего края КВМ – MPA (measurement position angle).
*** Солнечный ветер и связанная с ним долгота силовой линии от Земли (Wϕ) и ∆ϕ между ней и долготой вспышки.

https://gong.nso.edu/
https://gong.nso.edu/
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Этот вывод согласуется с ранее полученными ре-
зультатами исследования, свидетельствующими, 
что пересечения гелиосферного токового слоя не 
влияют на спад профиля потоков солнечных 
протонов с энергией 1−5 МэВ [Kecskeméty et al., 
2009]. Приведенные выше результаты исследо-
вания условий и процессов на Солнце во время 
трех рассматриваемых событий не дают возмож-
ности существенным образом выделить СПС 
30.03.2022 г.

4.2. Условия в межпланетной среде
Рассмотрим возможное влияние условий 

в межпланетной среде на поток солнечных про-
тонов, распространяющихся от Солнца к около-
земному пространству. 28.03.2022 г. в АО 12975 
зарегистрировано 2 КВМ, причем второй из них, 
наблюдавшийся на ~8 ч позже, обладал большей 
скоростью (табл. 2) и ускорением: на 20Rs (Rs – 
радиус Солнца) первый КВМ имел нулевую ско-
рость, а второй – 1300 км/с. Взаимодействие двух 

КВМ привело к образованию МКВМ, ударная 
волна которого достигла точки L1 31.03.2022 г. 
в 01:44 UT, а Земли в 02:24 UT (https://zenodo.org/
record/7991430). 

На рис. 5 представлена временная структура 
МКВМ в точке L1 и потоков протонов в L1 по 
данным КА ACE и на геостационарной орбите по 
данным ИСЗ GOES-16. Вертикальные пунктир-
ные линии соответствуют особенностям времен-
ного профиля МКВМ и потоков солнечных про-
тонов. Линия 1 показывает время прихода удар-
ного фронта в  точку L1, за которым следует 
турбулентная область (участок между линиями 1 
и 3 на этом рисунке) с быстрыми изменениями 
компонент ММП, характерными для оболочки 
магнитного облака [Burlaga et al., 1981; Burlaga, 
1988]. Внутри этой области между линиями 1 
и 2 наблюдалось более сильное ММП, которое 
сопровождалось ростом потоков солнечных про-
тонов до максимальных значений по данным 
КА ACE. Структуры ММП перед линией 3, соот-
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ветствующие внутренней части турбулентной обла-
сти, сопровождались небольшим локальным спа-
дом потоков частиц на КА ACE. Линия 3 соответ-
ствует входу в магнитное облако, с характерными 
свойствами [Burlaga et al., 1981; Burlaga, 1988; Pal 
et al., 2020; Vörös et al., 2021]: усиленным магнит-
ным полем, медленными изменениями его на-
правления (признаками вращения вектора поля), 
практическим отсутствием флуктуаций ММП, 
низкой плотностью солнечного ветра и низкой 
температурой плазмы (не показанной на рисун-
ке). В момент 4, по нашему мнению, наблюдается 
выход из магнитного облака, так как существенно 
уменьшается скорость изменения направления 
магнитного поля (Bx- и By-компоненты практи-
чески перестают изменяться). В каталоге (https://
izw1.caltech.edu/ACE/ASC/DATA/level3/
icmetable2.htm) приведена только длительность 
всего МКВМ (12:00 UT 31.03.2022 г. – 12:00 UT 
01.04.2022 г.).

Как видно на рис. 5, между временными профи-
лями потоков протонов, измеренных на КА ACE 
и на ИСЗ GOES-16, существует временной сдвиг 
~50 мин – время, необходимое солнечному ветру 
для преодоления 1.5 млн км со скоростью солнеч-
ного ветра (∼500 км/c), которая наблюдается 
в данный момент в точке L1 (рис. 5б). Структура 
магнитного поля внутри МКВМ поддерживала 
практически постоянное пространственное рас-
пределение потоков частиц внутри него, что мо-
жет означать распространение протонов с энер-
гиями по крайней мере до 60 МэВ в пространстве 
вместе с МКВМ. Это явление требует дальнейше-
го изучения. Таким образом, особенности вре-
менного профиля потоков солнечных протонов 
в  событии 30.03.2022 объясняются условиями 
в  межпланетной среде, в  частности, ролью 
МКВМ. Следует отметить, что этот МКВМ ми-
новал КА STEREO A, на котором никаких осо-
бенностей временного профиля потоков прото-
нов не наблюдалось.

Можно попытаться оценить радиальный раз-
мер гелиосферной структуры, через которую про-
ходит Земля:

– полный радиальный размер МКВМ (по ка-
талогу (https://izw1.caltech.edu/ACE/ASC/DATA/
level3/icmetable2.htm) с 12:00 UT 31.03.2022 г. до 
12:00 UT 01.04.2022 г.) при средней скорости сол-
нечного ветра ∼500 км/с составляет ∼0.3 а.е.;

– радиальный размер магнитного облака 
(между пунктирами 3 и 4 на рис. 5) ‒ ∼0.18 а.е. 

Оценка размеров МКВМ 31.03.2022 г. согла-
суется с  ранее полученными результатами: 
0.2÷0.4 а.е. [Lepping et al., 1990].

Анализ динамики показателя энергетического 
спектра потоков протонов, при аппроксимации 
степенной функцией, Е-γ дает возможность более 
точно описать различные части сложного и не
обычного временного профиля потока частиц 
30.03.2022 г. На рис. 6 показаны 5-минутные зна-
чения потоков протонов по данным ИСЗ GOES-16 
и  показатель интегрального энергетического 
спектра солнечных протонов в степенном пред-
ставлении (E > 5 МэВ ÷ E > 100 МэВ). Для полу-
чения спектра вычтен фон – средние потоки про-
тонов до исследуемых событий, в  интервале 
с 00:00 UT 27.03.2022 г. по 11:35 UT 28.03.2022 г. 
Полученные по 5-минутным данным показатели 
спектра сглаживались по 13 точкам. Квадратиком 
отмечено начало солнечной вспышки 30.03.2022, 
вертикальными отрезками 1 и 2 – начало возрас-
тания потоков протонов в каналах с E > 10 МэВ 
и  E > 60 МэВ, отрезком 3 – приход ударного 
фронта.

Можно видеть, что начало роста потоков ча-
стиц малых энергией наблюдалось раньше нача-
ла возрастания частиц высоких энергий. Эти ча-
стицы, скорее всего от предыдущего возрастания, 
были ускорены приближающимся ударным 
фронтом, который в момент вспышки 30.03.2022 
был на расстоянии ~0.2 а.е. от Земли. Этот фронт 
привел также к задержке прихода первых частиц 
от вспышки 30.03.2022 г. в 17:21 UT. С приходом 
30.03.2022 г. в ~19:05 UT более энергичных частиц 
от вспышки 30.03.2022 г. спектр становится более 
жестким, γ быстро уменьшается. Профили пото-
ков частиц с E > 60 МэВ и E > 100 МэВ до ударной 
волны свидетельствуют об их диффузионном рас-
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возрастания потока протонов >10 МэВ, 2 − >60 МэВ, 
3 – приход ударного фронта.
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пространении. Увеличение γ после ударной вол-
ны связано с приходом частиц внутри МКВМ. 
С ~06 UT 31.03.2022 г. до начала 01.04.2022 г. на-
блюдается практически экспоненциальный спад 
потока протонов с характерным временем ~ 8 ч. 
Показатель спектра γ плавно увеличивается. Это 
можно трактовать как конвективный перенос 
частиц в расширяющейся гелиосферной струк-
туре и испытывающих адиабатическое охлажде-
ние [Owens, 1979; Дайбог и др., 2004; Kecskeméty 
et al., 2009].

Представленные в данной работе результаты не 
первые по наблюдению воздействия МКВМ на 
поток солнечных энергичных частиц, но ранее по-
лученные результаты были достаточно противоре-
чивы (см. введение). Временные профили солнеч-
ных частиц, представленные в работе [Cane et al., 
1988] и в более поздней книге [Reames, 2017], не 
похожи на профиль потока солнечных протонов 
30.03.2022‒01.04.2022 г. В отражательной модели 
накопления, переноса и распространения частиц 
предполагается существование магнитных струк-
тур, содержащих полупрозрачные барьеры/зерка-
ла [Любимов и  Григоренко, 2007]. В  событии 
30.03.2022 г. на рис. 5г можно видеть накопление 
частиц за барьером (момент 3), который сформи-
рован сильным магнитным полем и областью с по-
вышенными плотностью и скоростью солнечного 
ветра (рис. 5 б−в).

В работах [Reames, 2013, 2023] подробно об-
суждаются “резервуары” ‒ обширные области 
пространства за распространяющимся ударным 
фронтом, содержащие захваченные частицы. Ре-
зервуар располагается между ударным фронтом 
и Солнцем. Согласно [Reames, 2023] захват ча-
стиц в резервуар является результатом взаимодей-
ствия ускоренных на ударном фронте частиц 
с альвеновской и/или гидромагнитной волновой 
активностью, сопровождающей ударный фронт. 
Внутри резервуара потоки частиц однородны, 
размеры резервуара могут составлять несколько 
астрономических единиц по радиусу и несколько 
десятков градусов по долготе. Границы резервуа-
ра могут частично совпадать с границами магнит-
ного облака. Гелиосферную структуру 31.03.2022 г. 
также можно рассматривать как резервуар, в ко-
торый попадают частицы, уже ускоренные во 
время взрывного процесса на Солнце 30.03.2022 г. 
Частицы распространяются в межпланетной сре-
де от Солнца к Земле внутри МКВМ. Таким об-
разом, можно констатировать, что существует 
довольно большое разнообразие подходов к объ-
яснению участия структур ММП и  связанных 
с ними ударных волн в формирование наблюда-
емых профилей протонов СПС.

5. ЗАКЛЮЧЕНИЕ
На основе результатов сравнительного анализа 

солнечного протонного события 30.03.2022 г. (X1.3), 
имеющего сложный временной профиль потоков 
солнечных протонов, с предыдущим и последу-
ющим солнечными протонными событиями: 
28.03.2022 г. (M4.0) и 02.04.2022 г. (M3.9), пред-
ложен сценарий развития СПС 30.03.2022 г. 
в околоземном пространстве:	

– 28.03.2022 г. в результате взрывных процес-
сов на Солнце возникают два КВМ. Более позд-
ний, но более быстрый КВМ догоняет более ран-
ний, и формируется МКВМ. 

– В момент начала солнечной вспышки 
в 17:21 UT 30.03.2022 г. ударный фронт МКВМ 
находился на расстоянии ∼0.2 а.е. от Земли.

– Солнечное событие 30.03.2022 г. начинается 
в 17:21 UT, в той же активной области, из которой 
вышли два КВМ, и через несколько минут про-
тоны настигают МКВМ, величина магнитного 
поля в котором достигает ∼20 нТл. 

– МКВМ препятствует распространению сол-
нечных протонов к Земле.

– Пространственное распределение потоков 
протонов внутри МКВМ было подобным в точке 
L1 и на Земле, но с временным запаздыванием 
~50 мин.

– Структура магнитного поля внутри МКВМ 
поддерживала практически постоянное про-
странственное распределение потоков частиц 
внутри него, что может означать распростране-
ние протонов с энергиями по крайней мере до 
60 МэВ в пространстве вместе с МКВМ.
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Influence of Processes on the Sun and in the Interplanetary Medium on the Solar 
Proton Event on March 30, 2022

N. A. Vlasova1, *, G. A. Bazilevskaya2, E. A. Ginzburg3, E. I. Daibog1, V. V. Kalegaev1, 4,  
K. B. Kaportseva1, 4, Yu. I. Logachev1, I. N. Myagkova1
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The results of a comparative analysis of the solar proton event on March 30, 2022, which has an unusual 
time profile of solar proton fluxes, with the previous and subsequent solar proton events (March 28, 2022 and 
April 02, 2022) are presented. Increases in energetic proton fluxes in interplanetary and near-Earth space 
are associated with successive solar X-ray flares M4.0, X1.3 and M3.9 and three halo-type coronal mass 
ejections. The work was done based on experimental data obtained from spacecraft located in interplanetary 
space (ACE, WIND, STEREO A, DSCOVR), in a circular polar orbit at an altitude of 850 km (Meteor-M2) 
and in geostationary orbit (GOES-16, Electro-L2). An explanation has been proposed for the features of the 
energetic proton flux profile in the solar proton event on March 30, 2022: protons accelerated in the flare 
on March 30, 2022 were partially screened by an interplanetary coronal mass ejection, the source of which 
was the explosive processes on the Sun on March 28, 2022; late registration of maximum proton fluxes, 
simultaneous for particles of different energies, is due to the arrival of particle fluxes inside an interplanetary 
coronal mass ejection. The spatial distribution of solar protons in near-Earth orbit was similar to the 
distribution at the Lagrange point L1, but with a delay of ~50 min.

Keywords: solar proton event, solar flare, coronal mass ejection, solar wind, interplanetary magnetic field
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