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1. ВВЕДЕНИЕ
В теории атмосферного электричества предло-

жено несколько математических моделей глобаль-
ной электрической цепи (ГЭЦ), основанных на 
исследовании распределения потенциала электри-
ческого поля, вызванного сторонними токами, 
моделирующими токи разделения в грозовом об-
лаке. Большинство математических моделей сво-
дится к нахождению потенциала электрического 
поля из краевой задачи (в стационарном случае) 
или начально-краевой задачи (в нестационарном 
случае) для дифференциального уравнения в не-
которой области. В этих задачах могут меняться 
1) область, в которой решается задача, 2) функция, 
моделирующая проводимость атмосферы, 3) пра-
вая часть уравнения, моделирующая грозовые ге-
нераторы, и 4) граничные условия. С основными 
результатами теории ГЭЦ и обзором литературы 
можно познакомиться в  публикациях [Мареев, 
2010; Мареев и др., 2019; Морозов, 2011]. 

В данной работе рассматривается нестацио-
нарная классическая модель ГЭЦ для атмосферы, 
занимающей шаровой слой, где в качестве крае-
вых условий на верхней границе атмосферы ис-
пользуются соотношения, связывающие значе-

ния электрического потенциала и тока в магнито-
сопряженных точках. Такие граничные условия 
для стационарной задачи использовались в рабо-
тах [Hays and Roble, 1979; Ogawa, 1985]. Вопросы 
математической корректности постановок задач 
как в стационарном, так и в нестационарном слу-
чаях с такими граничными условиями обсуждают-
ся в работе [Kalinin and Slyunyaev, 2017].

Аналогичная нестационарная задача с более 
простым граничным условием рассматривалась 
в работе [Морозов, 2005]. Главным основанием 
для использования простого граничного условия 
являлось утверждение о том, что в нижней атмос-
фере верхнее граничное условие не оказывает 
влияние на решение.

В работе [Денисова и  Калинин, 2018] была 
предпринята попытка сравнить аналитические 
решения двух соответствующих стационарных за-
дач с различными условиями на верхней границе 
атмосферы. В работе показано, что, если верхняя 
граница шарового слоя находится на высоте боль-
шей 90 км то действительно есть часть шарового 
слоя, содержащая токовые генераторы, в которой 
значения решений двух разных краевых задач 
близки. Однако, в части шарового слоя, располо-
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женной над генераторами, эти решения различны. 
Если верхняя граница шарового слоя находится на 
высоте, меньшей 70 км решения задач отличаются 
во всем шаровом слое, и  особенно в  магнито-
сопряженных точках на всех высотах. Так как ре-
шения задач с разными краевыми условиями в об-
ласти выше токовых генераторов различны при 
любой толщине шарового слоя, то исследование 
распределения электрического поля в задаче с гра-
ничными условиями [Hays and Roble, 1979] на 
верхней границе атмосферы, учитывающими маг-
нито-сопряженные точки, представляет интерес. 

Целью настоящей работы является аналитиче-
ское решение начально-краевой задачи для по-
тенциала в атмосфере, электрическая проводи-
мость которой экспоненциально растет, с гра-
ничными условиями [Hays and Roble, 1979] на 
верхней границе шарового слоя. Нахождение 
функции Грина соответствующей начально-кра-
евой задачи. Исследование распределения потен-
циала токового диполя и получение асимптоти-
ческих формул при t→∞.

2. ПОСТАНОВКА ЗАДАЧИ. ЧИСЛЕННОЕ 
ИССЛЕДОВАНИЕ

Электрический потенциал Φ r t, , ,θ ϕ( ) атмосфе-
ры, занимающей шаровой слой r r rm0 < < , при 
включении в начальный момент вертикального 
тока удовлетворяет уравнению:
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Далее в работе предполагается, что электриче-

ская проводимость атмосферы Ã зависит только 
от радиуса и экспоненциально возрастает по ра-
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σ0 − электрическая проводимость вблизи сфе-
рической земной поверхности; r – расстояние от 
центра Земли;�r0 – радиус Земли (при численных 
расчетах использовались следующие значения:  
r0  = 6370 км, H = 6 км; высота магнитосферы  
hm =  rm – r0, hm = 100 км); jext – плотность сторонних 
электрических токов, создаваемых грозовыми ге-
нераторами; r, �� �θ ϕи  –сферические координаты. 

Будем рассматривать отдельный источник сто-
роннего тока с номером s. В случае нескольких 
источников тока в формулах, приведенных ниже, 
следует провести суммирование по переменной 
s. Плотность стороннего радиального электриче-
ского тока запишем в виде [Денисова и Калинин, 
2018]
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Здесь введено обозначение
cos cos cos sin sin cos ,γ θ θ θ θ ϕ ϕ= + −( )s s s

Y Yn k n k, ,, , ,
1 2( ) ( )( ) ( ) −θ ϕ θ ϕ�  вещественные сфериче-

ские функции; P cosn γ( ) − � полиномы Лежандра, 
нормы сферических функций из первого и вто-

рого семейств совпадают, поэтому верхний ин-
декс при записи норм Yn k,  отсутствует.

Если Ns = ∞, то ряд, стоящий в правой части 
формулы (6), представляет собой разложение 
дельта-функции Дирака 1

sin θ
δ θ θ δ ϕ ϕ−( ) −( )s s  
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в ряд по сферическим функциям, что соответ-
ствует использованию в задаче (1)−(5) точечных 
зарядов для описания дипольного источника 
тока. Тогда γ  – угол между радиальным лучем 
точки наблюдения и осью диполя.

Если Ns принимает конечное значение, то 
сумма (6) является частичной суммой ряда. Гра-
фики функции (6) приведены в работе [Денисова 
и Калинин, 2018]. Эта функция имеет максимум 
в точке θ θ= s, ϕ ϕ= s, но знакопеременна, что за-
трудняет ее физическую интерпретацию. Реше-
ние задачи, полученное в приложении 1 данной 
статьи, а также асимптотические формулы при-
ложения 2, справедливы при любом значении Ns 
в том числе и при Ns = ∞. 

Для решения задачи (1)−(5) использовалось 
преобразование Лапласа по временной перемен-
ной [Лаврентьев и Шабат, 1973], применяя кото-
рое приходим к краевой задаче для уравнения:
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с граничными условиями, аналогичными (2)−(4). 
Через Φ, � � jext обозначены изображения функции Φ 
и jext. В шаровом слое r r rm0 < < � �, если p

r
H



2 0 0πσ  , 
модули коэффициентов уравнения (7) мало отли-
чаются от модулей коэффициентов уравнения:
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Поэтому при t
H
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 для исследования 

распределения электрического потенциала 
Φ r t, , ,θ ϕ( ) можно воспользоваться оригиналом 
решения краевой задачи для уравнения (8) с гра-
ничными условиями, аналогичными (2)−(4). 

Среди уравнений (8) можно выделить уравне-
ние, соответствующее стационарному дипольному 
генератору, у которого сила тока не меняется с те-
чением времени I t I ts s0 0( ) = ( )ϑ , а I p I ps s0 0( ) = / . 
В  случае нестационарного тока вида I t I f t fs s0 0 0 0( ) = ( ) ( ) =, � � 

I t I f t fs s0 0 0 0( ) = ( ) ( ) =, � �в  правой части уравнения  (8) 
нужно заменить 1

p
 функцией f p( ). Решения крае-

вых задач для этих уравнений отличаются только 
множителем, и знание оригинала для функции  Ф  
позволяет записать решение задачи с нестационар-

ным током в  виде свертки функций Ф и  ′ ( )f t . 
В простейших случаях выбора вида функции f t( ) 
решение задачи с нестационарным током имеет 
простой вид. Приведем несколько примеров.

1. Источник прекращает действовать в момент 
времени t T= �,  моделируется использованием 
функции f t t t T( ) = ( ) − −( )ϑ ϑ . Тогда решение за-
дачи с нестационарным источником (обозначаем 
Φ нестац( ) ) запишется в виде:
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Эти формулы справедливы в любой фиксиро-
ванной точке r, ,θ ϕ( ) , поэтому в формулах опуще-
на зависимость функций от пространственных 
переменных. Во всех приведенных примерах ре-
шение задачи для дипольного генератора с неста-
ционарным током выражается через решение 
задачи со стационарным током. 

В данной статье решение краевой задачи для 
уравнения (8) со стационарным током найдено 
аналитически. Это позволяет в случае нестацио-
нарного тока примеров 1−3 также записать анали-
тическое решение, подставив решение со стацио-
нарным током в формулы (9), (10), (11) в соответ-
ствии с физикой задачи. Более того, в приложении 1 
получено аналитическое выражение функции Гри-
на краевой задачи для уравнения (8). Тогда с по
мощью формулы (10) можно записать решение, 
отличающееся от функции Грина соответствую-
щей начально-краевой задачи только числовым 
множителем. Знание функции Грина позволяет 
представить решения начально-краевых задач для 
широкого класса нестационарных правых частей 
уравнения в виде свертки с функцией Грина.

В статье используются следующие обозначе-
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Подробное аналитическое решение краевой 
задачи для уравнения (8) со стационарным током 
и нахождение оригинала приведено в приложе-
нии 1. Для решения задачи применяется метод 
разложения решения по сферическим функциям, 
коэффициенты разложения, зависящие от ради-
альной переменной, выражаются через гипергео
метрические функции. Функция (10), в правую 
часть которой подставлено найденное в прило-
жении 1 решение (П1.27) с Ns = ∞, отличается от 
функции Грина только множителем. Функция 
Грина является обобщенной функцией, и в рабо-
те найдено ее представление в виде суперпозиции 
двух рядов по полиномам Лежандра. 

Стационарная модель токового диполя явля-
ется одной из простейших моделей правой части 
уравнения, для которой получаются сходящиеся 
ряды в шаровом слое. Формулы (П1.34)−(П1.36) 
определяют распределение электрического по-
тенциала Φ r t, , ,θ ϕ( ) во всем шаровом слое 
r r rm0 < <  при всех t H

r
r t

2 0 0πσ
θ ϕ. , , ,Функция Φ ( )

зависит от большого числа параметров: H, r0, θs, φs, 
hs0 = rs0 – r0, hs1 = rs1 – r0, hm = rm – r0, Ns. В работе 
будем полагать, что hs0 = 5 км, hs1 = 10 км, 
hm  = 100 км  и оценивать влияние на потенциал 
только параметра Ns.

1.Если Ns = ∞, формулы (П1.35) − (П1.37), 
определяющие решение краевой задачи, пред-
ставляют собой функциональные ряды, которые 
сходятся во всем шаровом слое, кроме точек рас-
положения зарядов, но сходятся неравномерно 
и  очень медленно. На рис. 1 приведен график 
стационарной части этого решения, нормирован-
ной на ионосферный потенциал, в зависимости 
от высоты h на радиальном луче расположения 
зарядов. Для построения графика проводились 
расчеты решения в нескольких точках интервалов 
(0, 4.5], [5.5, 9.5], [10.5, 20) оси h и использовалась 
линейная интерполяция. При этом для нахожде-
ния суммы ряда с точностью до первых двух зна-
чащих цифр приходится использовать частичные 
суммы ряда с Ns = 30000.

Численное исследование решения в нестацио-
нарном случае, при Ns = ∞ по формулам (П1.35)–
(П1.36) требует длительного счета и в статье про-
водится только в верхней части шарового слоя 
при больших значениях t. В приложении 2 при 
t → ∞ �для потенциала Φ r t, , ,θ ϕ( ) получена асим-
птотическая формула (П2.1), справедливая при 
любом значении Ns. Формула (П2.1) содержит 
только операцию суммирования и  при Ns = ∞ 
определяет асимптотику потенциала в любой точ-
ке шарового слоя, кроме точек расположения 
зарядов. На рис. 2 представлены графики стацио

нарного решения Φ ст( )

∞V s,
 (штриховая линия) 

и функции, стоящей в правой части асимптоти-
ческой формулы (П2.1), также нормированной 
на V s∞,  в зависимости от переменной θ  в момент 
времени ′ = =t t4 20πσ  при фиксированных h .и ϕ  
Для нахождения суммы ряда с точностью до де-
сятых достаточно использовать Ns = 1000.

Левый график соответствует h = 70 км, пра-
вый–верхней границе шарового слоя h = 100 �км.

Правые графики рис. 2 симметричны относи-
тельно прямой θ π= 2, что соответствует усло-
вию (2), максимальные значения представленных 
на рисунке функций соответственно равны 1.37 
и 1.45. Численные расчеты показывают незначи-
тельное понижение значения потенциала по 
сравнению с ионосферным на геомагнитных по-
люсах. При t → ∞ в окрестности точек (hm s s, ,θ ϕ ) 
и ( , , )hm s sπ θ ϕ−  нестационарное решение стре-
мится к стационарному сверху, а в окрестности 
точек ( h hm s m s, , , ,0 ϕ π ϕ( ) ( )и  − снизу.

Проблема неравномерной сходимости 
ряда (П1.35), прежде всего, связана с точечно-
стью зарядов рассматриваемого токового диполя.

2. При любом заданном конечном значении Ns 
формулы (П1.35−П1.37) содержат лишь конечные 
суммы, что значительно сокращает длительность 
расчетов, исключает разрывы в точках располо-
жения зарядов. Кроме того, это не просто частич-
ные суммы решения для токового диполя с точеч-

6. × 106

Ô(ñò)/V∞,S

4. × 106

2. × 106

0
5 10 15 h, êì

–2. × 106

–4. × 106

–6. × 106

–8. × 106

–1. × 106

Рис. 1. График функции Ф ст( )
∞/ ,V s  в зависимости 

от высоты h. Здесь  hm s s= = =100км, ,�θ θ ϕ ϕ .
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ными зарядами, а и решение начально-краевой 
задачи со специальной правой частью. Поэтому 
графики, приведенные в этом пункте, дают каче-
ственную картинку изменения потенциала с те-
чением времени.

θ θ
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Рис. 2.  Графики функции Ф ст( )
∞/ ,V s  (штриховая линия) и функции  Ф / ,V s∞ �  формулы (П2.1) в зависимости от 

угла θ в фиксированный момент времени ′ = =t t4 20πσ  при фиксированных h, ϕ ϕ= s ,  θ π
s =

3
. Левый график 

соответствует h h= =70 100� �км, правый км.
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Рис. 3. Графики функций Ф иФ ст/ /, ,V Vs s∞
( )

∞�� �  (шриховая линия) в  фиксированный момент времени 
′ = =t t4 0 050πσ .  (слева) и  ′ = =t t4 0 10πσ .  (справа) в зависимости от высоты h.

В нестационарном случае все расчеты прове-
дены для Ns = 20 �. На рис. 3 и рис. 4 штриховыми 
линиями изображен график стационарного ре-
шения задачи и приведены графики нестацио-
нарного решения задачи (1)−(5), нормированные 
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Если Ns = ∞, решение уравнения (П1.1) с ус-
ловиями (2)−(4) отличается от функции Грина 
только множителем.

В уравнении (П1.1) и граничных условиях, ана-
логичных (2)–(4), сделаем замену переменных:

σ σ

µ θ

=
−





=






0

0exp

cos

r r
H

и сформулируем краевую задачу в  области 
σ σ σ0 < < m:

σ
σ

σ
πσ
πσ σ µ ϕ

2
2

0
2

0
2

0
2 0

8

4

∂
∂

+
+( )
+( )

∂
∂

+ =
Φ Φ

∆ Φs s
s

p

p
H

r
,

=
+( ) −( ) ( )4

4 0
πσ
πσ

δ σ σ δ µ µ ϕ ϕ
Q

p p
s

s N s ss
, , , ,    

(П1.3)

Φ Φs m s mp p0 0σ µ ϕ σ µ ϕ, , , , , , ,( ) = −( )        (П1.4)

∂ ( )
∂

= −
∂ −( )

∂
Φ Φs m s mp p0 0σ µ ϕ

σ
σ µ ϕ

σ
, , , , , ,

,   (П1.5)

Φs p0 0 0σ µ ϕ, , , .( ) =                    (П1.6)

Здесь σ σ µ θm m s sr= ( ) =, cos .
Решение задачи представим в  виде ряда по 

сферическим функциям

на ионосферный потенциал, в  зависимости от 
высоты h на радиальном луче расположения за-
рядов в различные моменты времени в нижней 
атмосфере. Построенные графики показывают 
монотонное изменение функции Φ V s∞,  с течени-
ем времени в окрестности h = 5 �км и немонотон-
ное в окрестности h = 10 �км. Уже для ′ = =t t4 10πσ  
решение Φ V s∞,  мало отличается от стационарно-

го Φ ст( )
∞V s, , причем наибольшие отличия 

в окрестности точки h = 5 � �км.

4. ПРИЛОЖЕНИЕ 1.  
РЕШЕНИЕ НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ

В приложении приведено решение краевой 
задачи для уравнения:

	
1

4
1 12

0
2

0
2 0

0+





∂
∂

+








 +

∂
∂

=p

r r H r
s

s
s

πσ θ ϕ
Φ

∆ Φ
Φ

,

(П1.1)
          = ( ) −( )Q

pH
r rs

N s s ssσ θ
δ θ θ ϕ ϕ δ

sin
, , , 0  

с граничными условиями, аналогичными (2)–(4) 
(Q

I H

r
s

s= 0

0
2

). Решение краевой задачи для уравне-

ния (8) записывается в виде:

Φ Φ Φ= −s s0 1.                    (П1.2)
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Рис. 4. Графики функций Ф / ,V s∞  и  Ф ст( )
∞/ ,V s  (штриховая линия) в  фиксированный момент времени 

′ = =t t4 0 50πσ .  (слева) и  ′ = =t t4 10πσ  (справа) в зависимости от высоты h.
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Φs
n k

n

nk n k nk n kA p A p B p0 00
1 0

1 2= ( ) + ( ) ( ) + ( )
=

∞

=

( ) (∑∑σ σ µ ϕ σ, , , ,, ,Y Y )) ( )( )µ ϕ, .                      (П1.7)

Функция, представляемая рядом (П1.7), явля-
ется решением уравнения (П1.3), если коэффи-

циенты  A pnk σ,( )  удовлетворяют неоднородному 
уравнению:

σ
σ

σ
πσ
πσ σ

2
2

2

2

0
2

8

4

1∂
∂

+
+( )
+( )

∂
∂

−
+( ) =

A p

p

A n n H

r
Ank nk

nk  =
+( )

( )
−( ) ≤ ≤

( )
4

4
0

1

2 0
πσ
πσ

µ ϕ
δ σ σ

Q

p p
n Ns nk s s

n k
s s

Y

Y

,
, ,

,
    (П1.8)

�для  0 ≤ ≤n Ns и соответствующему однородному 
уравнению, если n Ns> . Из условия (П1.6) следу-
ет условие

A pnk σ0 0, .( ) =                       (П1.9)

Условиям (П1.4−П1.5), учитывающим связь 
электрических полей в  магнито-сопряженных 
точках на верхней границе атмосферы, соответ-
ствуют условия:

A p n knk mσ , , ,( ) = + =0 � � � �если нечетное число (П1.10)
∂
∂ ( ) = + =
A

p n knk
mσ

σ , , .0 � � �если четное число (П1.11)

Аналогичные краевые задачи получаются для 
функций�B pnk σ,( ), только в правой части уравне-
ния (П1.8) будет стоять сферическая функция 
с верхним индексом 2. Для n Ns>  в силу однород-
ности уравнения и однородности граничных ус-
ловий, все коэффициенты A pnk σ,( ) и  B pnk σ,( ) 
равны нулю.

Если p
4

1
πσ

< , однородное уравнение, соответ-

ствующее (П1.8), имеет два линейно-независи-
мых решения, которые выражаются через гипер-
геометрические функции [Градштейн и Рыжик, 
1963]:

A p
p

F
p

nk n n n n

n

1,одн( )
+

( ) = −





+ −





σ
πσ

α β α β
πσ

ξ

, , , , ,
4 4

1

2

A p
p

F
p

nk n n n n

n

2,одн( )
−

( ) = −





− − − − −


σ
πσ

α β α β
πσ

ξ

, , , ,
4

1 1 2
4

1

2





.                        (П1.12)

Здесь

α ξ ξ β ξ ξn n n n n n= + − −( ) = + + −( )1
2

1 1
1
2

1 12 2, ,                                    (П1.12)

где ξn
n n H

r
= +

+( )
1

4 1 2

0
2 . При нахождении ре-

шения неоднородного уравнения (П1.8) с усло-
виями (П1.9−П1.11) можно воспользоваться 
последней формулой пункта 24.2 справочника 
[Камке, 1976], а затем свойствами дельта-функ-
ции. Формула получается методом вариации 
произвольных постоянных и содержит вронски-
ан решений однородного уравнения. Для вычис-
ления вронскиана функций (П1.12) используют-
ся производные от гипергеометрических функ-
ций. Чтобы сократить записи используемых 

в данной работе гипергеометрических функций 
введем обозначения:

F x F xn n n n n
1( ) ( ) = +( )α β α β, , , ,

F x F xn n n n n
2 1 1 2( ) ( ) = − − − −( )α β α β, , , ,

F x F xn n n n n
3 1 1 1( ) ( ) = + + + +( )α β α β, , , ,

F x F xn n n n n
4 2 2 3( ) ( ) = − − − −( )α β α β, , , .

Функции с  номерами 3, 4 появляются при 
дифференцировании F Fn n

1 2( ) ( ), �  по независимой пе-
ременной x.
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В зависимости от того, каким является число 
n k+  , четным или нечетным, для решений крае-

A p

R p n k

nk

n k s s

n k

n

σ

µ ϕ
σ

,

,
, ,,

,( ) =
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(П1.13)

вых задач (П1.8) −(П1.11) получим:

Функция  R pn sσ σ, ,0( ) записывается с помощью формул





R p

Q

p

V
p p

n s

s

n s s

n
s m

n

σ σ

ξ σσ
σ

σ
πσ πσ

ξ

, ,

,

0

0 0

2 04 4

( ) =







− −





II
p p

V
p p

Q

p

n

n
m

s

s

− −





− −





< <
4 4

4 4

0

0

0 0
πσ πσ

πσ πσ

σ σ σ
,

,

,


ξξ σσ
σ
σ

πσ πσ πσ πσ
ξ

n s

s
n

m
n

s

n V
p p

I
p p

0

0 2 0 04 4 4 4





− −





− −
 , ,





− −





< <


















V
p p

n
m

s m

4 40

0

πσ πσ

σ σ σ
,

,

,      (П1.14)

где

I x x
x
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F x F x F x F xn n n n n
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1 2
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2
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
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Здесь 

φ
ξ
ξ ξn

n

n
n

n
nx F x

x
F x2 2 41

1 1
( ) ( ) ( )( ) =

−
+ ( ) −

+( ) ( ),   (П1.17)

φ
ξn n

n
nx F x

x
F x1 1 3

1
( ) ( ) ( )( ) = ( ) +

+( ) ( ).       (П1.18)

Для функции  R pn s


 σ σ, ,0( ) получается выраже-
ние, аналогичное (П1.14−П1.16), только в этих 
формулах над функциями, имеющими в обозна-
чениях одну волну, следует поставить две волны 
и учесть, что формулы, определяющие функции 
 

 φ φn nx x
2 1( ) ( )( ) ( ), � , другие:

 

 φ φn n n nx F x x F x
2 2 1 1( ) ( ) ( ) ( )( ) = − ( ) ( ) = ( ), .� � � � � � � � � � �   (П1.19)

Коэффициент B pnk σ,( ) имеет вид (П1.13), 
только в качестве множителя перед  R pn σ,( )  ис-
пользуется сферическая функция с верхним ин-
дексом 2.

Так как функция (П1.14) симметрична по пе-
ременным σ σ, s0, то удобно ввести параметр σs0 
в аргументы функций Фs nk nk n nA B R R0, , , ,� � ��  и ис-
пользовать обозначения, в которых важен поря-
док следования этих переменных, например,

Φs
s s

s s

p

p0
0 0 0

0
= ( ) < <

( )
Ф если

Ф если

σ σ µ ϕ σ σ σ
σ σ µ ϕ σ

, , , , ,

, , , , , 00 < <




 σ σm

и рассматривать только случай �σ σ σ0 0< < s . Если 
в решении, найденном для  σ σ σ0 0< < s ,заменить 
первый аргумент σ σ σ σ� � � � � �на и второй аргумент наs s0 0 и второй аргумент 

σ σ σ σ� � � � � �на и второй аргумент наs s0 0 , получим решение в области σ σ σs m0 < < .
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Здесь 
cos cos( )γ µµ µ µ ϕ ϕ1

2 21 1= − + − − −s s s ,
где �γ1  – угол между радиальным лучом, направ-
ленным в точку наблюдения, и радиальным лу-
чом, содержащим точки, сопряженные точкам 
расположения зарядов диполя. 

Для нахождения обратного преобразования 
Лапласа  функции Φ σ σ µ ϕ, , , ,s p0( )  нужно найти 
обратное преобразование функций 
A p R p R ps n s n s00 0 0 0σ σ σ σ σ σ, , , , , , , ,( ) ( ) ( )� �� . Рассмо-
трим сначала функцию R pn sσ σ, , .0( )  Эта функция 
определяется формулой (П1.14), если p

4
1

0πσ
< ,  

и  может быть продолжена в  комплексную пло-
скость p p ip= +, ,,, так как в  комплексную пло-
скость можно продолжить все гипергеометриче-
ские функции, входящие в формулу (П1.14). Учи-
тывая особые точки этих гипергеометрических 
функций, будем использовать замкнутый кон-
тур С в комплексной плоскости p p ip= +, ,,, изо-
браженный на рис. 5. Контур обходит особые точ-
ки функции R pn sσ σ, , .0( )  Эти точки расположены 
на отрицательной части вещественной оси p,  
и имеют координаты: − − − −4 4 4 40 0πσ πσ πσ πσm s, , , . 
Внутри контура С подынтегральная функция име-
ет полюс первого порядка в точке p = 0, поэтому

После подстановки  A p B pnk s nk sσ σ σ σ, , , , ,0 0( ) ( ) 
в ряд (П1.7)  внутреннюю сумму по k, при каждом 
фиксированном n, � разобьем на две суммы в зави-
симости от того, каким является число n k+ , чет-

ным или нечетным [Денисова и Калинин, 2018]. 
Тогда воспользовавшись теоремой о сложении 
присоединенных функций Лежандра, будем 
иметь

                                 Ф = ( ) +
+( ) ( ) + ( )




=
∑A p

n
R p R ps

n

N

n s n s

s

00 0
1

0 0
2 1

8
σ σ

π
σ σ σ σ, , , , , ,� ��

 ( ) +{ P cosn γ  	

+ ( ) − ( )



 ( )}� ��R p R pn s n s nσ σ σ σ γ, , , , .0 0 1P cos �

                                            (П1.20)

1
2 0

0
0π

σ σ σ σ
i

R p pt dp res R p pt
C

n s
p

n s∫ ( ) ( ) = ( ) ( )( )
=

, , exp , , exp .                                  (П1.21)

Обозначим этот вычет через Rn s
стац( ) ( )σ σ, 0 . 

Учитывая, что гипергеометрические функции 
при p = 0 равны 1, получим
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σ
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n
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n

n 

.� � � � �.                      (П1.22)

Для продолжения гипергеометрических функ-
ций F zn

i( ) ( ) � �за внешность единичного круга ком-
плексной плоскости z c разрезом вдоль веще-
ственной оси от 1 до ∞ � �использовалась формула 
[Градштейн и Рыжик, 1963, ф. 9.132(2)]. В соот-
ветствии с этой формулой функция R pn sσ σ, ,0( ) �
на верхнем и нижнем берегах разреза вдоль отри-

цательной части вещественной оси принимает 
комплексно-сопряженные значения.  Контур 
рис. 5 построен с учетом сложных аргументов ги-
пергеометрических функций, определяющих 
R pn sσ σ, ,0( ) �. Устремляя в формуле (П1.21) радиус 

большой окружности к ∞, а радиусы маленьких 
полуокружностей к нулю, получим
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Так как для нахождения  Im Rn �на верхнем бе-
регу разреза при − < < −4 4 0πσ πσm p,  использова-
лись формулы продолжения гипергеометриче-
ских функций  F z F zn n

1 2( ) ( )( ) ( ), �  за единичный круг 
[Градштейн и Рыжик, 1963, ф. 9.132(2)], то появ-
ляются еще две гипергеометрические функции:

F x F xn n n n n
5 1 1( ) ( ) = − + −( )α β α β, , , ,

F x F xn n n n n
6 1 1( ) ( ) = − − +( )α β α β, , , .

В интеграле выполним замену переменной ин-
тегрирования: η

πσ
= − p,

4 0
, выделим у  функции 

Im , ,Rn sσ σ πσ η0 04−( )  постоянный множитель 
и введем новую функцию

Im , , , , R
Q

Cn s
s

n sσ σ πσ η
σ

σ σ η0 0
0
2 04

4
−( ) = − ( ).

В результате функцию R tn sσ σ, ,0( )  перепишем 
в виде

–4πσs0

–4πσ0–4πσ

–4πσm P'

P"

Рис. 5. Контур интегрирования для нахождения оригинала функции R pn sσ σ, , .0( )

  R t R R pn s n s n s
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σ σ σ σ
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, , , Im , , .
0 0

4

4

0
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0
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−

−

∫стац eexp ., ,p t dp( )                         (П1.23)
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0
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4( ) = ( ) + ( ) −( ) ∫стац σσ η η0t d( ) .                           (1.24)

Учитывая особые точки функции Rn � � , проме-

жуток интегрирования 1
0

,σ
σ

m



  в  форму-

ле (П1.24) разделим на три части, в каждой из 
которых для функции Cn sσ σ η, ,0( ) получим свое 
аналитическое выражение. Будем использовать 
следующие обозначения:
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,    (П1.25)
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Здесь 
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Функция � ���R tn sσ σ, ,0( ) представляется по фор-
муле, аналогичной (П1.24), только все буквы с од-

ной волной следует заменить на буквы с двумя 
волнами. При этом функция ��Rn

стац( )  имеет вид:
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  (П1.26) 
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Все функции (П1.27)−(П1.34) записаны для 
случая �σ σ σ0 0< < s . Если σ σ σs m0 < <  в правой 
части формул (П1.27)−(П1.33) следует поменять 
местами σ σ��и s0 .

Если Ns = ∞, уравнение (П1.1) отличается от 
уравнения для функции Грина только множите-
лем. Поэтому, подставляя решение (П1.27) в фор-

мулу (10), получим, с точностью до множителя, 
функцию Грина начально-краевой задачи для 
уравнения, соответствующего (8).

Ниже запишем решение задачи для стацио-
нарного токового диполя. Заменяя в формулах 
(П1.27)−(П1.34) σs0  на σs1 , в соответствии с фор-
мулой (П1.2) получим:

Для нахождения коэффициента  A ps00 0σ σ, ,( ) 
не требуются специальные функции и, возвраща-

ясь к оригиналу, получим
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e ds
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Учитывая (П1.24), после перегруппировки слагаемых решение (П1.20) запишем в виде

Φ Φσ σ µ ϕ σ σ µ ϕ
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Здесь
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Φ Φ Φs s stσ µ ϕ σ σ µ ϕ σ σ µ ϕ, , , , , , , , ,( ) = ( ) − ( ) +( ) ( )стац стац
0 1

+ +( ) ( ) ( ) − ( )( ) +{
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0 12 1 P cos , , , ,γ σ σ σ σ
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в области σ σ σ0 0< < s .
В области σ σ σs s0 1< <  временной вклад дает и слагаемое, соответствующее n = 0,
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В области σ σ σs m1 < <  получим
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5. ПРИЛОЖЕНИЕ 2.  
АСИМПТОТИКА РЕШЕНИЯ ЗАДАЧИ  

ПРИ �t → ∞
Асимптотические формулы при t → ∞ для ре-

шений (П1.35−П1.37) можно найти, используя 
метод Лапласа. Определяющую роль здесь играет 

поведение подынтегральных функций интегра-
лов (П1.33, П1.34) в окрестности точки η = 1. Так 
как функция Cn s

1
0

( ) ( )σ σ η, ,  симметрична по пере-
менным σ σ��и s0 , то главный асимптотический 
член во всех формулах (П1.35, П1.36, П1.37) оди-
наков, и асимптотическая формула имеет вид:

Φ Φs s st
t

t t
fσ µ ϕ σ µ ϕ

πσ

πσ πσ
σ, , , , ,

exp

ln
,( ) ≈ ( ) +

−( )
( )

( )стац 4

4 4

0

0
2

0

µµ ϕ πσ, , , .( ) → ∞4 10t t                (П2.1)

Здесь

f f fs s sσ µ ϕ σ σ µ ϕ σ σ µ ϕ, , , , , , , ,( ) = ( ) − ( )0 1 ,

f
Q

n a bs
n

N

n s n n s

s

σ σ µ ϕ
πσ

σ σ γ σ σ, , , , cos ,0
0 1

0 04
2 1( ) = +( ) ( ) ( ) + ( )

=
∑ P Pnn cos ,γ1( ){ }

a a an s n s n sσ σ σ σ σ σ, , , ,0 0 0
1
2

( ) = ( ) + ( )( ) 





ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ       том 65       № 2       2025

227МОДЕЛЬ ГЛОБАЛЬНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ 

Отметим, что асимптотическая формула для 
сферического среднего от потенциала не получа-
ется из формулы (П2.1). Это связано с тем, что 
формулы (П1.36)−(П1.37) содержат интеграл, не-

зависящий от θ и ϕ. Именно этот интеграл опре-
деляет асимптотическую формулу для сфериче-
ского среднего потенциала. Например, в области  
h h hs m1 < <
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Временной множитель формулы (П2.1) зави-
сит от σ0, а формулы (П2.3) от σs0. Сферическое 
среднее приближается при t → ∞   к V s∞,  снизу. 
Численные расчеты по формуле (П2.1) (см. рис. 2) 
показывают, что на верхней границе атмосферы 
в окрестности точек (θ ϕs s, ) и (π θ ϕ− s s, ) потенци-
ал Φs   стремится к Φs

стац( ) сверху, а в окрестностях 
точек (0, ϕs ) �  и (π ϕ, ) .s − снизу

Полученные результаты этой статьи могут 
быть использованы при моделировании глобаль-
ной электрической цепи с учетом влияния маг-
нитосферы на распределение электрического 
поля в атмосфере.

6. ОСНОВНЫЕ ВЫВОДЫ
1. В работе найдено аналитическое решение 

нестационарной задачи для потенциала электри-
ческого поля токового диполя в атмосфере, зани-
мающей шаровой слой, проводимость которой 
экспоненциально возрастает по радиусу, с гра-
ничными условиями, учитывающими связь элек-
трического потенциала и тока в магнито-сопря-
женных точках верхней границы шарового слоя. 
Аналитическое решение представляется форму-
лами (П1.35)−(П1.37) для стационарного токово-
го диполя и (9)−(11) для простейших случаев не-
стационарного тока.

2. Получено аналитическое выражение для 
функции Грина начально-краевой задачи, для 
уравнения, соответствующего уравнению (8) 
(формулы (10), (П1.27)).

3. Проведен численный анализ изменения по-
тенциала электрического поля с течением времени 

для модельных правых частей уравнения (Ns = 20) 
на радиальном луче расположения зарядов в ниж-
ней атмосфере. Показано монотонное стремление 
потенциала электрического поля с течением вре-
мени при t → ∞  к  стационарному потенциалу 
в окрестности отрицательного заряда грозового 
облака и немонотонное в окрестности положи-
тельного заряда.

4. Получены асимптотические формулы 
(П2.1)–(П2.2) для электрического потенциала 
токового диполя при t → ∞, учитывающие зави-
симость от пространственных координат. Прове-
ден анализ изменения потенциала электрическо-
го поля с течением времени в верхней части ша-
рового слоя для токового диполя Ns = ∞( ). 
Показано, что на оси расположения токового 
диполя на верхней границе атмосферы потенци-
ал электрического поля с  течением времени 
уменьшается, а на геомагнитных полюсах увели-
чивается.

5. При исследовании более сложных модель-
ных задач с распределенным источником тока 
результаты, полученные в статье, могут оказаться 
полезными, так как позволяют записать анали-
тическое решение для широкого класса правых 
частей уравнения (8) в виде свертки с функцией 
Грина.
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Model of a Global Electric Circuit with Conditions at Magnetic Conjugate Points  
of the Upper Boundary of the Atmosphere in the Non-Stationary Case
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National Research Lobachevsky State University of Nizhni Novgorod (NNSU), Nizhny Novgorod, Russia

*e-mail: natasha.denisova@mail.ru

A new analytical representation of the electric potential is obtained for the classical non-stationary model 
of the global electrical circuit of the atmosphere, occupying a spherical layer, the conductivity of which 
increases exponentially along the radius. The boundary conditions of the model take into account the 
relationship between the values ​​of the electric potential and current at magnetically conjugate points of 
the upper boundary of the atmosphere. Using the obtained representation, the potential distribution for 
a  current dipole in a spherical layer is analyzed. New asymptotic formulas for the electric potential of 
a current dipole at t→∞ at each point of the spherical layer are obtained. An analytical expression for the 
Green’s function of the corresponding initial-boundary value problem is found.

Keywords: atmospheric electricity, global electric circuit, boundary conditions at magnetically conjugate 
points, non-stationary model, analytical solution
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