RAS PhysicsГеомагнетизм и аэрономия Geomagnetism and Aeronomy

  • ISSN (Print) 0016-7940
  • ISSN (Online) 3034-5022

Vector magnetic field reconstruction from single-component data using evolutionary algorithm

PII
10.31857/S0016794024040104-1
DOI
10.31857/S0016794024040104
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 64 / Issue number 4
Pages
567-576
Abstract
A simple evolutionary algorithm is proposed to reconstruct a vector anomalous magnetic field from measurement data of one of its components. The algorithm selects the positions and magnetic moments of an assembly of point magnetic dipoles, the total magnetic field of which approximates with the required accuracy the data of single-component magnetic measurements at a known height above the earth’s surface. The distribution of sources obtained in this manner enables the reconstruction of all three components of the magnetic field. In this study, an evolutionary algorithm was utilized to solve the problem of reconstructing the magnetic field components Hx and Hy from the measured Hz vertical component data. Additionally, an iterative procedure was proposed for calculating the Hx, Hy and Hz components of the magnetic field from known data for the anomalous component of the geomagnetic field.
Keywords
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Колесова В.И. Аналитические методы магнитной картографии. Отв. ред. В.И. Почтарев. Москва: Наука, 222 c. 1985.
  2. 2. Яновский Б.М. Земной магнетизм. Ленинград : Изд-во ЛГУ, 591 c. 1978.
  3. 3. Alken P., Thébault E., Beggan C.D., et al. International Geomagnetic Reference Field: the thirteenth generation // Earth Planets and Space. V. 73. № 1. 2021. doi:10.1186/s40623-020-01288-x
  4. 4. Arturi C.M., Di Rienzo L., Haueisen J. Information Content in Single-Component Versus Three-Component Cardiomagnetic Fields // IEEE Transactions on Magnetics. V. 40. № 2. P. 631–634. 2004. doi:10.1109/tmag.2004.824891
  5. 5. Baniamerian J., Liu S., Hu X., Fedi M., Chauhan M.S., Abbas M.A. Separation of magnetic anomalies into induced and remanent magnetization contributions // Geophysical Prospecting. V. 68. № 7. P. 2320–2342. 2020. doi:10.1111/1365-2478.12993
  6. 6. Biswas A., Acharya T. A very fast simulated annealing method for inversion of magnetic anomaly over semi-infinite vertical rod-type structure // Modeling Earth Systems and Environment. V. 2. № 4. P. 1–10. 2016. doi:10.1007/s40808-016-0256-x
  7. 7. Buchanan A., Finn C.A., Love J.J. et al. Geomagnetic referencing—the real-time compass for directional drillers // Oilfield Review. V. 25. № 3. P. 32−47. 2013
  8. 8. The National Centers for Environmental Information. (2018). [Online]. Available: https://www.ngdc.noaa.gov/geomag/geomag.shtml
  9. 9. de Groot L.V., Fabian K., Béguin A., Kosters M.E., Cortés‐Ortuño D., Fu R.R., Jansen C.M.L., Harrison R.J., van Leeuwen T., Barnhoorn A. Micromagnetic Tomography for Paleomagnetism and Rock‐Magnetism // Journal of Geophysical Research: Solid Earth. V. 126. № 10. 2021. doi:10.1029/2021jb022364
  10. 10. Ding X., Li Y., Luo M., Chen J., Li Z., Liu H. Estimating Locations and Moments of Multiple Dipole-Like Magnetic Sources From Magnetic Gradient Tensor Data Using Differential Evolution // IEEE Transactions on Geoscience and Remote Sensing. V. 60. P. 1–13. 2022. doi:10.1109/tgrs.2021.3094057.
  11. 11. Essa K.S., Elhussein M. Interpretation of Magnetic Data Through Particle Swarm Optimization: Mineral Exploration Cases Studies // Natural Resources Research. V. 29. № 1. P. 521–537. 2020. doi:10.1007/s11053-020-09617-3
  12. 12. Ibrahim D. An overview of soft computing // Procedia Computer Science. V. 102. P. 34–38. 2016. doi:10.1016/j.procs.2016.09.366
  13. 13. Kaftan İ. Interpretation of magnetic anomalies using a genetic algorithm // Acta Geophysica. V. 65. № 4. P. 627–634. 2017. doi:10.1007/s11600-017-0060-7
  14. 14. Kaji C.V., Hoover R.C., Ragi S. Underwater Navigation using Geomagnetic Field Variations / 2019 IEEE Intern. Conference on Electro Information Technology (EIT). 2019. doi:10.1109/eit.2019.8834192
  15. 15. Lourenco J.S., Morrison H.F. Vector magnetic anomalies derived from measurements of a single component of the field // Geophysics. V. 38. № 2. P. 359–368. 1973. doi:10.1190/1.1440346
  16. 16. Maier H.R., Razavi S., Kapelan Z., Matott L.S., Kasprzyk J., Tolson B.A. Introductory overview: Optimization using evolutionary algorithms and other metaheuristics // Environmental Modelling & Software. V. 114. P. 195–213. 2019. doi:10.1016/j.envsoft.2018.11.018
  17. 17. Montesinos F.G., Blanco-Montenegro I., Arnoso J. Three-dimensional inverse modelling of magnetic anomaly sources based on a genetic algorithm // Physics of the Earth and Planetary Interiors. V. 253. P. 74–87. 2016. doi:10.1016/j.pepi.2016.02.004
  18. 18. Munschy M., Fleury S. Scalar, vector, tensor magnetic anomalies: measurement or computation? // Geophysical Prospecting. V. 59. № 6. P. 1035–1045. 2011. doi:10.1111/j.1365-2478.2011.01007.x
  19. 19. Pace F., Santilano A., Godio A. A Review of Geophysical Modeling Based on Particle Swarm Optimization // Surveys in Geophysics. V. 42. № 3. P. 505–549. 2021. doi:10.1007/s10712-021-09638-4
  20. 20. Pilkington M., Boulanger O. Potential field continuation between arbitrary surfaces — Comparing methods // Geophysics. V. 82. № 3. P. J9–J25. 2017. doi:10.1190/geo2016-0210.1
  21. 21. Zuo B., Hu X., Leão‐Santos M., Wang L., Cai Y. Downward Continuation and Transformation of Total‐Field Magnetic Anomalies Into Magnetic Gradient Tensors Between Arbitrary Surfaces Using Multilayer Equivalent Sources // Geophysical Research Letters. V. 47. № 16. 2020. doi:10.1029/2020gl088678
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library