ОФНГеомагнетизм и аэрономия Geomagnetism and Aeronomy

  • ISSN (Print) 0016-7940
  • ISSN (Online) 3034-5022

Спектры и анизотропия космических лучей в период GLE64

Код статьи
10.31857/S0016794024010066-1
DOI
10.31857/S0016794024010066
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 64 / Номер выпуска 1
Страницы
55-59
Аннотация
По данным наземных наблюдений космических лучей методом спектрографической глобальной съемки проведено исследование наземного возрастания интенсивности космических лучей 24 августа 2002 г. Получены спектры вариаций первичных космических лучей и их анизотропия. По данным измерений космического аппарата GOES и мировой сети станций космических лучей рассчитаны дифференциальные жесткостные спектры ускоренных частиц в окрестности Солнца. Оценена максимальная жесткость, до которой произошло ускорение солнечных частиц.
Ключевые слова
Дата публикации
01.01.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
61

Библиография

  1. 1. Белов А.В., Ерошенко Е.А., Крякунова О.Н., Курт В.Г., Янке В.Г. Наземные возрастания солнечных космических лучей в трех последних циклах солнечной активности // Геомагнетизм и аэрономия. Т. 50. №1. С. 23—36. 2010.
  2. 2. Дворников В.М., Кравцова М.В., Сдобнов В.Е. Диагностика электромагнитных характеристик межпланетной среды по эффектам в космических лучах // Геомагнетизм и аэрономия. Т. 53. № 4. С. 457—468. 2013. https://doi.org/10.7868/S001679401304007X
  3. 3. Логачёв Ю.И., Базилевская Г.А., Вашенюк Э.В. и др. Каталог солнечных протонных событий 23-го цикла солнечной активности (1996−2008 гг.). ESDBrepository, ГЦ РАН, Москва. https://doi.org/10.2205/ESDB-SAD-P-001-RU
  4. 4. Луковникова А.А., Сдобнов В.Е. Питч-угловая анизотропия и дифференциальные жесткостные спектры космических лучей во время GLE 2 и 6 мая 1998 г. // Солнечно-земная физика. Т. 8. № 2. С. 29—33. 2022. https://doi.org/10.12737/szf-82202204
  5. 5. Dvornikov V.M., Sdobnov V.E. Analyzing the solar proton event of 22 October 1989, using the method of spectrographic global survey // Solar Phys. V. 178. № 2. P. 405—422. 1998.
  6. 6. Gopalswamy N., Xie H., Yashiro S., et al. Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23 // Space Sci. Rev. V. 171. P. 23—60. 2012. https://doi.org/10.1007/s11214-012-9890-4
  7. 7. Kovalev I.I., Olemskoy S.V., Sdobnov V.E. A proposal to extend the spectrographic global survey method // J. Atmosp. Solar-Terr. Phys. V. 235. P. 105887. 2022. https://doi.org/10.1016/j.jastp.2022.105887
  8. 8. Kravtsova M.V., Sdobnov V.E. Cosmic ray ground level enhancement on August 24, 1998 // Bull. Rus. Acad. Sci.: Phys. V. 87. № 7. P. 1018—1020. 2023. https://doi.org/10.3103/S1062873823702428
  9. 9. Lugaz N., Roussev I.I., Sokolov I.V., Jacobs C. The August 24, 2002 coronal mass ejection: when a western limb event connects to earth // Proc. IAU 257 Symposium. P. 391—398. 2009. https://doi.org/10.1017/S1743921309029615
  10. 10. Miroshnichenko L.I. Solar Cosmic rays: fundamentals and applications. Springer, 2014. 521 p.
  11. 11. Miroshnichenko L.I., Yanke V.G. Size distributions of solar proton events: methodological and physical restrictions // Solar Phys. V. 291. P. 3685—3704. 2016. https://doi.org/10.1007/s11207-016-1002-2
  12. 12. Mishev A., Poluianov S., Usoskin I. Assessment of spectral and angular characteristics of sub-GLE events using the global neutron monitor network // J. Space Weather and Space Climate. 7. A28. 2017. https://doi.org/10.1051/swsc/2017026
  13. 13. Papaioannou A., Kouloumvakos A., Mishev A., et al. The first ground level enhancement of solar cycle 25 on 28 October 2021 // Astron. Astrophys. V. 660. L5. 2022. https://doi.org/10.1051/0004-6361/202142855
  14. 14. Raymond J. C., Ciaravella A., Dobrzycka D., et al. Far-ultraviolet spectra of fast coronal mass ejections associated with X-class flares // Astrophys. J. V. 597. № 2. P. 1106—1117. 2003. https://doi.org/10.1086/378663
  15. 15. Struminsky A.B., Logachevb Yu.I., Grigorieva I.Yu., Sadovski A.M. Two types of gradual events: solar protons and relativistic electrons // Geomag. Aeron. V. 60. № 8. P. 1057—1066. 2020. https://doi.org/10.1134/S001679322008023X
  16. 16. URL CME, hhttps://cdaw.gsfc.nasa.gov/CME_list
  17. 17. URL Data GLE, hhttps://gle.oulu.fi
  18. 18. URL IZMIRAN, hhttps://cr0.izmiran.ru
  19. 19. URL Flares, hhttps://www.solarmonitor.org/
  20. 20. URL GOES, hhttps://www.goes.noaa.gov/
  21. 21. URL NMDB, hhttps://www.nmdb.eu/
  22. 22. URL SEP, hhttps://umbra.nascom.nasa.gov/SEP/
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека