RAS PhysicsГеомагнетизм и аэрономия Geomagnetism and Aeronomy

  • ISSN (Print) 0016-7940
  • ISSN (Online) 3034-5022

Simulation of spectral observations of an eruptive prominence

PII
10.31857/S0016794024010031-1
DOI
10.31857/S0016794024010031
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 64 / Issue number 1
Pages
23-28
Abstract
The paper presents the results of an analysis of observations of an eruptive prominence on the MFS and HSFA2 spectrographs of the Ondřejov Observatory (Astronomical Institute, Czech Republic) in the lines of hydrogen, helium and calcium. After processing the spectra, the integral radiation fluxes in the lines were determined and a theoretical calculation of the physical parameters of the plasma was carried out using a model in the absence of local thermodynamic equilibrium. A comparison of the observed and calculated values showed that the observed radiation fluxes in the lines can be explained in a model of stationary gas radiation taking into account the opacity in the spectral lines. To calculate theoretical fluxes, in some cases it was necessary to introduce radiation from several layers with different temperatures and heights. The calculated radiation fluxes agree with the observed ones with an accuracy of 10%. As a result of the simulation, the main parameters of the prominence plasma were obtained: temperature, concentration, etc. The values of radiation fluxes in the spectral lines indicate the inhomogeneity of the emitting gas, and there may be regions next to each other whose temperatures differ by an order of magnitude.
Keywords
Date of publication
01.01.2024
Year of publication
2024
Number of purchasers
0
Views
52

References

  1. 1. Белова О.М., Бычков К.В. Устойчивость нестационарного охлаждения чисто водородного газа относительно числа учитываемых дискретных уровней // Астрофизика. Т. 61. № 1. C. 119–130. 2018.
  2. 2. Биберман Л.М. К теории диффузии резонансного излучения // ЖЭТФ. Т. 17. С. 416. 1947.
  3. 3. Биберман Л.М., Воробьёв В.С., Якубов И.Т. Кинетика неравновесной низкотемпературной плазмы. М.: Наука, 378 с. 1982.
  4. 4. Вайнштейн Л.А., Собельман И.И., Юков Е.А. Сечения возбуждения атомов и ионов электронами. М.: Наука, 142 с. 1973.
  5. 5. Anzer U., Heinzel P. Prominence Parameters Derived from Magnetic-Field Measurements and NLTE Diagnostics // Sol. Phys. V. 179. № 1. P. 75–87. 1998. https://doi.org/10.1023/A:1005000616138
  6. 6. Holstein T. Imprisonment of resonance radiation in gases // Phys. Rev. V. 72. P. 1212—1233. 1947. https://doi.org/10.1103/PhysRev.72.1212
  7. 7. Holstein T. Imprisonment of resonance radiation in gases. II // Phys. Rev. V. 83. P. 1159—1168. 1951. https://doi.org/10.1103/PhysRev.83.1159
  8. 8. Johnson L.C. Approximations for collisional and radiative transition rates in atomic hydrogen // ApJ. V. 174. P. 227—236. 1972. https://doi.org/10.1086/151486
  9. 9. Kotrč P., Bárta M., Schwartz P., Kupryakov Y.A., Kashapova L.K., Karlický M. Modeling of H-alpha Eruptive Events Observed at the Solar Limb // Sol. Phys. V. 284. № 2. P. 447—466. 2013. https://doi.org/10.1007/s11207-012-0167-6
  10. 10. Labrosse N., Heinzel P., Vial J.-C., et al. Physics of Solar Prominences: I-Spectral Diagnostics and Non-LTE Modelling // Space Sci. Rev. V. 151. P. 243—332. 2010. https://doi.org/10.1007/s11214-010-9630-6
  11. 11. Melendez M., Bautista M.A., Badnell N.R. Atomic data from the IRON project LXIV. Radiative transition rates and collision strengths for Ca II // A&A. V. 469. P. 1203—1209. 2007. https://doi.org/10.1051/0004-6361:20077262
  12. 12. Schwartz P., Balthasar H., Kuckein C., et al. NLTE modeling of a small active region filament observed with the VTT // Astron. Nachr. V. 337. № 10. P. 1045—1049. 2016. https://doi.org/10.1002/asna.201612431
  13. 13. Schwartz P., Gunár S., Jenkins J.M., et al. 2D non-LTE modelling of a filament observed in the Hα line with the DST/IBIS spectropolarimeter // A&A. V. 631. P. A146 (12P). 2019.
  14. 14. Seaton M.J. The spectrum of the solar corona // Planetary and Space Science. V. 12. № 1. P. 55—74. 1964.
  15. 15. Vial J.-C., Engvold O. (eds) Solar Prominences. Astrophys. Space Sci. Lib. V. 415. 498 p. 2018. https://doi.org/10.1007/978-3-319-10416-4
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library