RAS PhysicsГеомагнетизм и аэрономия Geomagnetism and Aeronomy

  • ISSN (Print) 0016-7940
  • ISSN (Online) 3034-5022

Aeronomic and Dynamic Correction of the Global Model GTEC for Disturbed Conditions

PII
10.31857/S0016794022600491-1
DOI
10.31857/S0016794022600491
Publication type
Status
Published
Authors
Volume/ Edition
Volume 63 / Issue number 1
Pages
80-93
Abstract
An aeronomic and dynamic correction of the GTEC median global model of the total electron content for disturbed conditions (Ap ≥ 15 nT) is proposed. The GTEC global median model is developed for quiet conditions (Ap < 15 nT) as a function of the geographic coordinates, universal time UT, day of the year, and solar activity level (the solar radio emission flux F10.7). The model is based on a spherical harmonic analysis of the GIM-TEC Global Ionospheric Maps (1996–2019) provided by the Jet Propulsion Laboratory (NASA). The proposed GDMTEC global dynamic model (Global Dynamic Model of TEC) consists of the GTEC median model updated with several dynamic and aeronomic corrections related to formation of the main ionospheric trough, position of the auroral ionization maximum and changes of the thermospheric temperature and composition. The advantage of the proposed corrections of the median model is the independence of forecast of the data in real time from assimilation of the current observational data. Testing of the model for disturbed conditions shows an improvement of the forecast compared to the IRI-Plas ionospheric reference model
Keywords
Date of publication
01.01.2023
Year of publication
2023
Number of purchasers
0
Views
65

References

  1. 1. – Аннакулиев С.К., Деминов М.Г., Шубин В.Н. Полуэмпирическая модель бури в ионосфере средних широт // Солнечно-земная физика. Вып. 8. С. 145–146. 2005.
  2. 2. – Деминов М.Г. Ионосфера Земли: закономерности и механизмы // Электромагнитные и плазменные процессы от недр Солнца до недр Земли. Pед. В.Д. Кузнецов. М.: ИЗМИРАН. С. 295–346. 2015. https://www.izmiran.ru/IZMIRAN75/
  3. 3. – Деминов М.Г., Шубин В.Н. Эмпирическая модель положения главного ионосферного провала // Геомагнетизм и аэрономия. Т. 58. № 3. С. 366–373. 2018. https://doi.org/10.7868/S0016794018030070
  4. 4. – Деминов М.Г., Шубин В.Н., Бадин В.И. Модель критической частоты Е-слоя для авроральной области // Геомагнетизм и аэрономия. Т. 61. № 5. С. 610–617. 2021. https://doi.org/10.31857/S0016794021050059
  5. 5. – Кринберг И.А., Выборов В.И., Кошелев В.В., Попов В.В., Сутырин Н.А. // Адаптивная модель ионосферы. Ред. Л.А. Щепкин. М.: Наука. С. 1–133. 1986.
  6. 6. – Шубин В.Н., Аннакулиев С.К. Модель отрицательной фазы ионосферной бури на средних широтах // Геомагнетизм и аэрономия. Т. 35. № 3. С. 79–87. 1995.
  7. 7. – Шубин В.Н., Аннакулиев C.К. Полуэмпирическая модель foF 2 ночной субавроральной ионосферы в период отрицательной фазы интенсивных ионосферных бурь // Геомагнетизм и аэрономия. Т. 37. № 4. С. 26–34. 1997.
  8. 8. – Шубин В.Н., Деминов М.Г. Глобальная динамическая модель критической частоты F 2 слоя ионосферы // Геомагнетизм и аэрономия. Т. 59. № 4. С. 461–473. 2019. https://doi.org/10.1134/S0016794019040151
  9. 9. – Alken P., Thébault E., Beggan C. et al. International Reference Geomagnetic Field: the thirteenth generation // Earth Planets Space. V. 73. 2021. https://doi.org/10.1186/s40623-020-01288-x
  10. 10. – Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang X. International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions // Space Weather. V. 15. P. 418–429. 2017. https://doi.org/10.1002/2016SW001593
  11. 11. – Cesaroni C., Spogli L., Aragon-Angel A., Fiocci M., Dear V., De Franceschi G., and Tomano V. Neural network based model for global total electron content forecasting // J. Space Weather Space Clim. V. 10. 11. 2020. https://doi.org/10.1051/swsc/2020013
  12. 12. – Galkin I., Fron A., Reinisch B. et al. Global monitoring of ionospheric weather by GIRO and GNSS data fusion // Atmosphere. V. 13. 371. 2022. https://doi.org/10.3390/atmos13030371
  13. 13. – Gulyaeva T. L., Bilitza D. Towards ISO Standard Earth Ionosphere and Plasmasphere Model // New Developments in the Standard Model. Ed. R. J. Larsen. N.Y.: NOVA Sci. Pub. P. 1–39. 2012.
  14. 14. – Gulyaeva T. L., Arikan F., Hernandez-Pajares M., Stanislawska I. GIM-TEC adaptive ionospheric weather assessment and forecast system // J. Atmos. Solar-Terr. Phys. V. 102. P. 329–340. 2013.
  15. 15. – Hierl P.M., Dotan I., Seeley J.V., Van Doren J.M., Morris R.A., Viggiano A.A. Rate constants for the reactions of O+ with N2 and O2 as a function of temperature (300–1800 K) // J. Chem. Phys. V. 106. P. 3540–3544. 1997.
  16. 16. – Iluore K., Lu J. Long short-term memory and gated recurrent neural networks to predict the ionospheric vertical total electron content // Adv. Space Res. V. 70. № 3. P. 652–665. 2022. https://doi.org/10.1016/j.asr.2022.04.066
  17. 17. – Lean J.L. One- to 10-day forecasts of ionospheric total electron content using a statistical model // Space Weather. V. 17. P. 313–338. 2019. https://doi.org/10.1029/2018SW002077
  18. 18. – Liu L., Zou S., Yao Y., Wang Z. Forecasting global ionospheric TEC using deep learning approach // Space Weather. V. 18. № 11. 2020. https://doi.org/10.1029/2020SW002501
  19. 19. – Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues // J. Geophys. Res. V. 107. P. 1468–1483. 2002.
  20. 20. – Shubin V.N., Gulyaeva T.L. Global mapping of Total Electron Content from GNSS observations for updating IRI-Plas model // Adv. Space Res. V. 69. № 1. P. 168–175. 2022. https://doi.org/10.1016/j.asr.2021.09.032
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library